• 제목/요약/키워드: reliability-based

검색결과 9,210건 처리시간 0.036초

Reliability-Based Design Optimization of Slider Air Bearings

  • Yoon, Sang-Joon;Choi, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1722-1729
    • /
    • 2004
  • This paper presents a design methodology for determining configurations of slider air bearings considering the randomness of the air-bearing surface (ABS) geometry by using the iSIGHT. A reliability-based design optimization (RBDO) problem is formulated to minimize the variations in the mean values of the flying heights from a target value while satisfying the desired probabilistic constraints keeping the pitch and roll angles within a suitable range. The reliability analysis is employed to estimate how the fabrication tolerances of individual slider parameters affect the final flying attitude tolerances. The proposed approach first solves the deterministic optimization problem. Then, beginning with this solution, the RBDO is continued with the reliability constraints affected by the random variables. Reliability constraints overriding the constraints of the deterministic optimization attempt to drive the design to a reliability solution with minimum increase in the objective. The simulation results of the RBDO are listed in comparison with the values of the initial design and the results of the deterministic optimization, respectively. To show the effectiveness of the proposed approach, the reliability analyses are simply carried out by using the mean value first-order second-moment (MVFO) method. The Monte Carlo simulation of the RBDO's results is also performed to estimate the efficiency of the proposed approach. Those results are demonstrated to satisfy all the desired probabilistic constraints, where the target reliability level for constraints is defined as 0.8.

Variation of reliability-based seismic analysis of an electrical cabinet in different NPP location for Korean Peninsula

  • Nahar, Tahmina Tasnim;Rahman, Md Motiur;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.926-939
    • /
    • 2022
  • The area of this study will cover the location-wise seismic response variation of an electrical cabinet in nuclear power point (NPP) based on classical reliability analysis. The location-based seismic ground motion (GM) selection is carried out with the help of probabilistic seismic hazard analysis using PSHRisktool, where the variation of reliability analysis can be understood from the relation between the reliability index and intensity measure. Two different approaches such as the first-order second moment method (FOSM) and Monte Carlo Simulation (MCS) are helped to evaluate and compare the reliability assessment of the cabinet. The cabinet is modeled with material uncertainty utilizing Steel01 as the material model and the fiber section modeling approach is considered to characterize the section's nonlinear reaction behavior. To verify the modal frequency, this study compares the FEM result with recorded data using Least-Squares Complex Exponential (LSCE) method from the impact hammer test. In spite of a few investigations, the main novelty of this study is to introduce the reader to check and compare the seismic reliability assessment variation in different seismic locations and for different earthquake levels. Alongside, the betterment can be found by comparing the result between two considered reliability estimation methods.

Probabilistic optimization of nailing system for soil walls in uncertain condition

  • Mitra Jafarbeglou;Farzin Kalantary
    • Geomechanics and Engineering
    • /
    • 제34권6호
    • /
    • pp.597-609
    • /
    • 2023
  • One of the applicable methods for the stabilization of soil walls is the nailing system which consists of tensile struts. The stability and safety of soil nail wall systems are influenced by the geometrical parameters of the nailing system. Generally, the determination of nailing parameters in order to achieve optimal performance of the nailing system for the safety of soil walls is defined in the framework of optimization problems. Also, according to the various uncertainty in the mechanical parameters of soil structures, it is necessary to evaluate the reliability of the system as a probabilistic problem. In this paper, the optimal design of the nailing system is carried out in deterministic and probabilistic cases using meta-heuristic and reliability-based design optimization methods. The colliding body optimization algorithm and first-order reliability method are used for optimization and reliability analysis problems, respectively. The objective function is defined based on the total cost of nails and safety factors and reliability index are selected as constraints. The mechanical properties of the nailing system are selected as design variables and the mechanical properties of the soil are selected as random variables. The results show that the reliability of the optimally designed soil nail system is very sensitive to uncertainty in soil mechanical parameters. Also, the design results are affected by uncertainties in soil mechanical parameters due to the values of safety factors. Reliability-based design optimization results show that a nailing system can be designed for the expected level of reliability and failure probability.

RELIABILITY PREDICTION BASED ON DEGRADATION DATA

  • Kim, Jae-Joo;Jeong, Hai-Sung;Na, Myung-Hwan
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.177-183
    • /
    • 2000
  • As monitoring, testing, and measuring techniques develop, predictive control of components and complete systems have become more practical and affordable. In this paper we develop a statistics-based approach assuming nonlinear degradation paths and time-dependent standard deviation. This approach can be extended to provide reliability estimates and limit value determination in the censoring case fur predictive maintenance policy.

  • PDF

유도탄의 신뢰도 예측 모델 개선에 관한 연구 (A Study on the Improvement of Reliability Prediction Model for Guided Missile)

  • 서양우;윤정환;김희욱;김정태
    • 시스템엔지니어링학술지
    • /
    • 제16권1호
    • /
    • pp.9-17
    • /
    • 2020
  • Currently, Storage Reliability is analyzed when predicting the reliability of guided missile. However, Mission Reliability and Logistics Reliability should be analyzed according to the definition of reliability in MIL-STD-785B. Therefore, it is necessary to accurately predict the reliability of guided missile based on the definition of reliability. In this paper, we proposed improved the reliability procedure and model for guided missile based on which the definition of reliability considering the mission profile. The proposed model can calculate the final failure rate by applying the ratio of the dormant and storage according to the mission profile. The proposed model has been confirmed to be more accurate than the existing model compared to the actual failure rate value. The results of this study can be useful for applying the reliability prediction to any guided missile.

Lagrange Multipliers에 의한 슬래브시스템의 신뢰성 최적설계 (Reliability Optimum Design of Slab System based on Lagrange Multipliers)

  • 김현석;이증빈;정철원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.113-124
    • /
    • 1997
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabilistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering exprience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on two-way slab system which could possibly replace optimum design based traditional provisions of the current code, based on the AFOSM reliablity theory.

  • PDF

강철도교의 피로신뢰성과 잔존피로수명 (Fatigue Reliability and Remaining Fatigue Life of Existing Steel Rail-Road Bridges)

  • 조효남;신재철;허상구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 봄 학술발표회 논문집
    • /
    • pp.11-16
    • /
    • 1989
  • This paper presents a fatigue reliability model for the reliability-based evaluation of remaining fatigue life of existing rail-road bridges. It is demonstrated that the simple fatigue reliability model based on the Weibull distribution of fatigue life can be extended by incorporating various effects due to the rate of the train-traffic increase and in-service Inspections. The paper also suggests the system fatigue reliability analysis using an approximate formulation and 2nd-order bound solutions. The application of the proposed model to existing rail-road brdiges based on field load tests shows that it may be practically used for the assessment of fatigue reliability, remaining life, and in-service inspection scheduling of existing rail-road bridges.

  • PDF

신뢰도를 모르는 불완전한 채널 정보에 기초한 선형 프리코딩 (Linear Precoding Based on the Imperfect CSI Without Knowing the CSI Reliability)

  • 이웅;윤은철
    • 한국통신학회논문지
    • /
    • 제40권9호
    • /
    • pp.1678-1685
    • /
    • 2015
  • 본 논문에서는 신뢰도를 모르는 불완전한 채널 정보를 이용해 빔포밍 기법의 장점과 직교 시공간 블록 코딩 (Orthogonal Space-Time Block Coding, OSTBC) 기법의 장점을 결합해 주는 선형 프리코딩 기법을 제안한다. 먼저 다양한 값의 채널 정보의 신뢰도를 가정한 상태에서 각 신뢰도가 프리코딩 성능에 미치는 영향을 분석한다. 그 뒤, 효율적인 프리코더의 설계를 위하여 수신 SNR을 바탕으로 필요한 채널 정보의 신뢰도를 예측하는 방법을 제안한다. 시뮬레이션을 통해 제안된 프리코더 설계 기법의 효율성을 확인한다.

Reliability-Based Design Optimization of a Superconducting Magnetic Energy Storage System (SMES) Utilizing Reliability Index Approach

  • Jeung, Gi-Woo;Kim, Dong-Wook;Sung, Young-Hwa;Kim, Heung-Geun;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제17권1호
    • /
    • pp.46-50
    • /
    • 2012
  • A reliability-based optimization method for electromagnetic design is presented to take uncertainties of design parameters into account. The method can provide an optimal design satisfying a specified confidence level in the presence of uncertain parameters. To achieve the goal, the reliability index approach based on the firstorder reliability method is adopted to deal with probabilistic constraint functions and a double-loop optimization algorithm is implemented to obtain an optimum. The proposed method is applied to the TEAM Workshop Problem 22 and its accuracy and efficiency is verified with reference of Monte Carlo simulation results.

신뢰성을 고려한 유연 날개 형상 최적 설계에 대한 연구 (STUDY OF RELIABILITY BASED FLEXIBLE WING SHAPE DESIGN OPTIMIZATION)

  • 김수환;권장혁
    • 한국전산유체공학회지
    • /
    • 제11권1호
    • /
    • pp.21-28
    • /
    • 2006
  • Reliability Based Design Optimization(RBDO) is one of the optimization methods that minimize the product failure due to small changes of operating conditions or process errors. It searches the optimum that satisfies the safety margin of each constraint, and it gives stable and reliable designs. However, RBDO requires many times oj computational efforts compared with the conventional deterministic optimization(DO) to evaluate the probability of failure about each constraint, therefore it is hard to apply directly to large-scaled problems such as a flexible wing shape design optimization. For the efficient reliability analysis, the approximate reliability analysis method with the two-point approximation(TPA) is proposed In this study, the lift-to-drag ratio maximization designs are performed with 3-dimensional Navier-Stokes analysis and NASTRAN structural analysis, and the optimization results about the deterministic, FORM and SORM are compared.