• Title/Summary/Keyword: reliability function

Search Result 2,032, Processing Time 0.029 seconds

Reliability in Two Independent Uniform and Power Function-Half Normal Distribution

  • Woo, Jung-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.3
    • /
    • pp.325-332
    • /
    • 2008
  • We consider estimation of reliability P(Y < X) and distribution of the ratio when X and Y are independent uniform random variable and power function random variable, respectively and also consider the estimation problem when X and Y are independent uniform random variable and a half-normal random variable, respectively.

Bayesian Estimation of the Reliability Function of the Burr Type XII Model under Asymmetric Loss Function

  • Kim, Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.389-399
    • /
    • 2007
  • In this paper, Bayes estimates for the parameters k, c and reliability function of the Burr type XII model based on a type II censored samples under asymmetric loss functions viz., LINEX and SQUAREX loss functions are obtained. An approximation based on the Laplace approximation method (Tierney and Kadane, 1986) is used for obtaining the Bayes estimators of the parameters and reliability function. In order to compare the Bayes estimators under squared error loss, LINEX and SQUAREX loss functions respectively and the maximum likelihood estimator of the parameters and reliability function, Monte Carlo simulations are used.

Parametric Estimation of a Renewal Function

  • Jeong, Hai-Sung;Na, Myung-Hwan
    • International Journal of Reliability and Applications
    • /
    • v.1 no.1
    • /
    • pp.81-87
    • /
    • 2000
  • One of the most important quantities in reliability theory is the expected number of renewals of a system during a given interval. This quantity, the renewal function, is used to determine the optimal preventive maintenance policy and to estimate the cost of a warranty. In this paper we study a parametric approach for a renewal function. The simulation study is presented to compare the relative performance of the introduced estimators of a renewal function. And we show that the proposed parametric estimator performs well.

  • PDF

Length-biased Rayleigh distribution: reliability analysis, estimation of the parameter, and applications

  • Kayid, M.;Alshingiti, Arwa M.;Aldossary, H.
    • International Journal of Reliability and Applications
    • /
    • v.14 no.1
    • /
    • pp.27-39
    • /
    • 2013
  • In this article, a new model based on the Rayleigh distribution is introduced. This model is useful and practical in physics, reliability, and life testing. The statistical and reliability properties of this model are presented, including moments, the hazard rate, the reversed hazard rate, and mean residual life functions, among others. In addition, it is shown that the distributions of the new model are ordered regarding the strongest likelihood ratio ordering. Four estimating methods, namely, method of moment, maximum likelihood method, Bayes estimation, and uniformly minimum variance unbiased, are used to estimate the parameters of this model. Simulation is used to calculate the estimates and to study their properties. Finally, the appropriateness of this model for real data sets is shown by using the chi-square goodness of fit test and the Kolmogorov-Smirnov statistic.

  • PDF

Reliability Analysis under the Competing Risks (경쟁적 위험하에서의 신뢰성 분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

RELIABILITY-BASED OPTIMIZATION OF AIRFOILS USING A MOMENT METHOD AND PARSEC FUNCTION (모멘트 기법과 PARSEC 함수를 이용한 에어포일 신뢰성 기반 최적설계)

  • Lee, J.;Kang, H.;Kwon, J.;Kwak, B.;Jung, K.
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.28-34
    • /
    • 2012
  • In this study, the reliability-based design optimization of the airfoil was performed. PARSEC function was used to consider the uncertainty of the aerodynamic shape for the reliability-based shape optimization of airfoils. Among various reliability analysis methods, the moment method was used to compute the probability of failure of the aerodynamic performance. The accuracy of the reliability analysis was compared with other methods and it was found that the moment method predicts the probability of failure accurately. Deterministic and reliability-based optimizations were performed for the shape of the airfoil and it was demonstrated that reliability-based optimum assures the aerodynamic performances under uncertainties of the shape of the airfoil.

A Study on Warranty and Quality Assurance Model for Guided Missiles Based on Storage Reliability (저장신뢰도 기반의 유도탄 품질보증모델에 대한 연구)

  • Jung, Sanghoon;Lee, Sangbok
    • Journal of Applied Reliability
    • /
    • v.17 no.2
    • /
    • pp.83-91
    • /
    • 2017
  • Purpose: The purpose of this study is to develop a quality assurance model and to determine appropriate warranty period for a guided missile using its field data. Methods: 10 years of actual firing data is collected from the defense industry company and military. Parametric maximum likelihood estimation for a reliability function is determined with the data. Results: The reliability function estimates average lifetime of the missile. That function shows a user requirement, 80% reliability (lifetime) is come up when 8 years have passed, which is longer than the estimates in the missile's development phase. Conclusion: Quality assurance warranty for a guided missile must be established with actual test data. It is necessary to update and modify the reliability prediction and the warranty period with actual field test data.

OVERVIEW OF RELIABILITY AND RELIABILITY CASE STUDIES

  • Murthy, D.N.P.
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.04a
    • /
    • pp.3-11
    • /
    • 2004
  • Failure is the termination of the ability of an item to perform a required function.[IEC 50]. Equipment fails, if it is no longer able to carry out its intended function under the specified operational conditions for which it was designed.(omitted)

  • PDF

A software reliability model with a Burr Type III fault detection rate function

  • Song, Kwang Yoon;Chang, In Hong;Choi, Min Su
    • International Journal of Reliability and Applications
    • /
    • v.17 no.2
    • /
    • pp.149-158
    • /
    • 2016
  • We are enjoying a very comfortable life thanks to modern civilization, however, comfort is not guaranteed to us. Development of software system is a difficult and complex process. Therefore, the main focus of software development is on improving the reliability and stability of a software system. We have become aware of the importance of developing software reliability models and have begun to develop software reliability models. NHPP software reliability models have been developed through the fault intensity rate function and the mean value functions within a controlled testing environment to estimate reliability metrics such as the number of residual faults, failure rate, and reliability of the software. In this paper, we present a new NHPP software reliability model with Burr Type III fault detection rate, and present the goodness-of-fit of the fault detection rate software reliability model and other NHPP models based on two datasets of software testing data. The results show that the proposed model fits significantly better than other NHPP software reliability models.