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Parametric Estimation of a Renewal Function
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Abstract. One of the most important quantities in reliability theory
is the expected number of renewals of a system during a given interval.
This quantity, the renewal function, is used to determine the optimal
preventive maintenance policy and to estimate the cost of a warranty. In
this paper we study a parametric approach for a renewal funtion. The
simulation study is presented to compare the relative performance of
the introduced estimators of a renewal function. And we show that the
proposed parametric estimator performs well.

Key Words : renewal function, convolution, parameter, cubic spline.

1. INTRODUCTION

In reliability theory, renewal processes describe the model of an item in continu-
ous operation which is replaced at each failure, in a negligible amount of time, by a
new, statistically identical item. The most important and basic function in renewal
processes is the renewal function, the expected number of renewals in a given inter-
val. To obtain the renewal function, we should derive the k -fold convolution, F)(t)
generated from the life distribution function, F'(t). This F(*¥)(t) is defined recursively
by the repeated convolution of F(t) itself according to the following scheme

FO¢) = F(t)
F®@) = (FEVxF)1) = /tFUc-l)(x)f(t—x)dx, k> 2,
0
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where f is the density funtion, the derivative of F' and the simbol * denotes convo-
lution. And the renewal function, M (¢) is defined as follows.

M(t) = i F®)(t).
k=1

It is impossible or, if possible, inconvenient to express the renewal function in an
analytical form. An analytical solution can be found if F(t) is a special case of
gamma, distribution such as exponential and Erlang . There are three approaches
for calculating the renewal function. The first is to find the renewal funtion in
the case that life distribution function F(t) is known. Smith and Leadbetter(1963)
have given a series-expansion method for calculating it when F'(¢) is Weibull distri-
bution. Cléroux and McConalogue(1976) have given a method involving numerical
algorithm for calculating F(*)(t) recursively from the known density function. Since,
in many cases, the underlying life distribution F'(¢) is unknown, this method is un-
realistic. The second is a nonparametric approach free from assumptions about a
life distribution. Frees(1986a, b) has suggested the nonparametric estimator for a
renewal fuction based on random samples without replacement. Let X;, Xa,--- , X,
be non-negative random samples with distribution F'(t). He defines a nonparametric
estimator

We(t) = Y0 PO ), (1)
k=1
where
5(k) )™
P05 = (k) Xi:I(Xﬂ bk X < 8), )

and the summation in (2) extends all subsamples without replacement of size k from
X1,Xs,-+,X,. Here, I(A) is the indicator function of the event A. The design
parameter m is a positive integer depending on n such that m <nandm tooasn 1
0o. Griibel and Pitts(1993) have suggested another nonparametric estimator based
on the sum of convolutions with replacement. In this case the summation in the
estimator extends n* times. To enhance the efficiency, modified methods for Frees’s
estimator are suggested by Jeong, Kim and Na(1997). These methods are based
on a piecewise linearization and on the fact that the bounded monotonic functions
which converge pointwise to the bounded monotonic continuous function converge
uniformly. The drawback of these nonparametric approaches is that the efficiency
is relatively low due to the loss of information about a life distribution and that the
computational difficulty arises as the sample size increases. As mentioned before,
the underlying life distribution F(¢) is unknown in most cases. There is another
possible way to overcome these problems; Assuming distribution family including
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life distribution functions which will be identified if unknown characteristics are
decided, you have only to think out how to guess these unknown characteristics,
which are named unknown parameters. This way is the third approach called a
parametric approaches. In this paper we consider the parametric estimation of
renewal function.

2. ESTIMATION OF F®)(t) AND M(t)

Let F(t|0) be the life distribution function with unknown parameter 8 and F(t|6)
be the estimator of F(¢|#) . Based on the random samples X;, X5, .-, X, the
estimator of 8, § can be obtained by the traditional point estimation method such as
maximun likelihood estimation, method of moments etc. We consider the algorithm
which gets k-th convolution, F*)(¢|§) from F(t|f) and its derivative, f(¢|§) by cubic
spline interpolation, and calculates the renewal function with this k-th convolution.

Let tg,t1,--- ,tx be a knot sequence in [0, 00 ) where 0 =ty < t; < --- < tg <
00, K > 1. Values of F()(t|d) , k > 2 at the knots points ¢ = ty,%;,-- - ,tx can be
obtained as followings.

F®0]§) = o,

it
F®Ng16) = E/f FED(210)f(t; - z|f)dz, i=1, - K.
J:l tj_l

In the above equation, the integral from the point £;_; to ¢; can be calculated
using the numerical integration formula such as Newton-cotes and Simpson’s com-
posite. In this case F(:=1)(t|6) is defined only at t = to,¢1,--- ,tx and intermidiate
values required by the numerical integration formula are given by cubic spline inter-
polation.

A cubic spline approximation to F*)(t|§) over the entire range can be ob-
tained by defining K different cubic polynomials y; for each interval [ t;j_;, t;],
j =12,-.- K. If F; denotes F(k)(tjlé) for simplicity, then for ¢;_; < z < t5,
F®)(z|@) is represented by y; satisfied by the following four conditions.

a) y;(tj-1) = Fj-1,

b) y;(t;) = Fj,
9 dyj—1(tj-1) _ dy;(tj—1)

dx dez ’
g Pvimalticg) _ Pyslti1) 3)
dz? dz?2
Since, in general, y; , § = 1,2,---, K are different cubics, there are 4K coef-

ficients to determine K different cubics. From the conditions in (3) at the knot
points ¢t = t1,t2,- -+ ,tx—1, we can obtain 4(K — 1) equations. Furthemore we know
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y1(to) = Fy and yx(tx) = Fg. In order to find all coefficients, two additional
conditions are needed besides the 4K — 2 conditions obtained above. These two
can be obtained with the left and right boundary conditions. Usually three kinds
of conditions are recommanded (chapter 4 in de Boor(1978)). The first is that F'g
and F'k, the values of the first derivative of F(*)(¢|d) at the boundary point are
specified. The second is that F”y and F"k, the values of the second derivative of
F®)(t]6) at the boundary point are specified. Natural splines are obtainable by
setting these values zero. The last is “not-a-knot” condition. If one knows nothing
about boundary point derivatives, then one should try the “not-a-knot” condition.
Here, one chooses y; and yx so that y; = y2 and yx = yx—; (i-e., the first and the
last interior knots are not active).
Using F(’“)(tlé) by cubic spline approximation, we construct the renewal function
as follows.
m
Wp(t) = Y FO(46). (@)

k=1

3. SIMULATION STUDY

The purpose of this simulation study is to compare the relative performance of
the estimators for a renewal function by computing the bias and the mean squared
error(MSE). Simulation study is performed for three estimators mentioned before.
The first is Mca(t), an estimator by Cléroux and McConalogue’s algorithm stated
in the Introduction. Since Cléroux and McConalogue’s algorithm assumes the known
life distribution, random samples are not needed in Cléroux and McConalogue’s al-
goritmn. Hence in the case of Cléroux and McConalogue, MSE has no meaning.
The second is Mp(t), Frees’ nonparameric estimator in (1). The last is Mp(t), our
parametric estimator in (4). As is known well, the exponential distribution with
parameter A, f(t|]A) = Ae™™, X > 0, generates the analytically defined renewal
function with M(t) = At. And let F(¢|\) be the Erlang distribution with 2 stages
with its density, A*e~*!. The renewal function of this Erlang distribution is gen-
erated as the closed form with M(t) = At/2 — 1/4 + 1/4e~*t. For the above two
distributions with parameter A = 1, random samples are generated by using Inter-
national Mathematical and Statistical Libraries(IMSL) routine RNGAM. Based on
this random samples Xi, X, ---, X, the maximun likelihood estimator and the
momemt method estimator for A can be obtained as A = n/ S iy X for exponen-
tial distribution and A = 2n/ Y i1 X for Erlang distribution with 2 stages. At the
25, 50, and 75 percentiles, the bias and MSE for the sample size(n) 10, 20, 30, 50
and 100 are calculated with 1000 replications. Due to the computational difficulty,
the simulations for Mp(t) is carried for sample size n < 30. The bias and MSE
for the sample size 50 and 100 are calculated for the case of Mp(t) only. IMSL
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Table 1: Bias and MSE of estimators with 1000 replications t

n tt M(t)  Mcum(t) Mr(t) Mp(t)
Bias Bias MSE Bias MSE
10 2877 2877 .000010 .0057 .0346 0075 .0004
6931 .6931 -.000061 .0024 .1032 .0421 .0025
1.3863 1.3863 -.004161 .0033 .2690 1106 .0137
20 2877 2877 .000010 .0029 .0181 .0043 .0003
.6931 .6931 -.000061 -.0037 .0512 .0191 .0011
1.3863 1.3863 -.004161 -.0126 .1302 .0470 .0036
30 2877 2877 .000010 .0021 .0112 .0026 .0003
.6931 6931 -.000061 -.0031 .0315 .0125 .0009
1.3863 1.3863 -.004161 -.0110 .0848 0306 .0024
n t Mp(t) n 2 Mp(t)
Bias MSE Bias MSE
50  .2877 .0013 .0003 100  .2877 .0008 .0003
.6931 .0073 .0008 .6931 .0036 .0007
1.3863 .0175 .0017 1.3863 .0062 .0014

1 Random variables are generated from exponential distribution with
ft)=ett>0.

1 These values are obtained from 25, 50 and 75 percentiles of given
distribution.

routine CSDEC and CSVAL are used to compute the cubic spline interpolant. And
“not-a-knot” is used for the type of boundary condition. m = 5 is sufficient for the
number of terms required to summation associated with estimators Mcaz(t), Mp(t)
and M p(t) since the value of k-fold convolution is close to 0 as k increases. Thus
we use m = 5.

We summarize our findings from TABLE 1 and TABLE 2 as follows;
1) M (t) always has less bias than Mpg(t) and Mp(t) in all cases expect the case
of n = 100 in TABLE 2, which has been expected.
2) Mp(t) outperforms Mp(t) with respect to the MSE in all cases.
3) Although Mp(t) has higher bias than Mp(t) in the most cases of n < 30, the
differences in MSEs have much more to compansate for that.
4) The more n increases, the less the bias and MSE of Mp(t) is. This is a good
property as an estimator.
5) For the case of n = 100, the differences in the biases between Mp(t) and Mcs(t)
are little. This means that our proposed estimator Mp (t) performs similarly compare
to Mcp(t) obtained under the assumption of the known life distribution function.
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Table 2: Bias and MSE of estimators with 1000 replications }

n tt M(t)  Mcu(t) Mp(t) Mp(t)
Bias Bias MSE Bias MSE
10 .1913 .2672 -.000542 -.0036 .0231 .0051 .0003
1.6783 .5979 -.000717 -.0008 .0564 .0178 .0009
2.6926 1.0975 -.000778 0032 .1141 .0470 .0033
20 1913 2672 -.000542 .0007 .0131 .0010 .0003
1.6783 .5979 -.000717 0043 .0286 .0075 .0007
2.6926 1.0975 -.000778 .0081 .0588 .0252 .0018
30 .1913 .2672 -.000542 .0017 .0087 -.0007 .0003
1.6783 5979 -.000717 .0090 .0198 .0036 .0006
2.6926 1.0975 -.000778 .0144 .0402 0181 .0014

n t Mp(t) n t Mp(t)
Bias MSE Bias MSE
50 9613 -.0001 .0003 100 9613 -.0005 .0003
1.6783 .0022 .0006 1.6783 .0005 .0006
2.6926 .0092 .0012 2.6926 .0042 .0011

1 Random variables are generated from Erlang distribution with
ft) =te bt > 0.

1 These values are obtained from 25, 50 and 75 percentiles of given
distribution.

In summary, our proposed parametric estimator Mp(t) for a renewal function
performs well.
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