• Title/Summary/Keyword: release potential

Search Result 888, Processing Time 0.034 seconds

Detrimental effects of lipopolysaccharides on maturation of bovine oocytes

  • Zhao, Shanjiang;Pang, Yunwei;Zhao, Xueming;Du, Weihua;Hao, Haisheng;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1112-1121
    • /
    • 2019
  • Objective: Gram-negative bacteria lipopolysaccharide (LPS) has been reported to be associated with uterine impairment, embryonic resorption, ovarian dysfunction, and follicle retardation. Here, we aimed to investigate the toxic effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Methods: First, we developed an in vitro model to study the response of bovine cumulusoocyte complexes (COCs) to LPS stress. After incubating germinal vesicle COCs in $10{\mu}g/mL$ of LPS, we analyzed the following three aspects: the expression levels of the LPS receptor toll-like receptor 4 (TLR4) in COCs, activities of intracellular signaling protein p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappa B (NF-${\kappa}B$); and the concentrations of interleukin (IL)-$1{\beta}$, tumor necrosis factor (TNF)-${\alpha}$, and IL-6. Furthermore, we determined the effects of LPS on the maturation ability and parthenogenetic developmental competence of bovine oocytes. Results: The results revealed that LPS treatment significantly elevated TLR4 mRNA and protein expression levels in COCs. Exposure of COCs to LPS also resulted in a marked increase in activity of the intracellular signaling protein p-p38 MAPK and NF-${\kappa}B$. Furthermore, oocytes cultured in maturation medium containing LPS had significantly higher concentrations of the proinflammatory cytokines IL-$1{\beta}$, TNF-${\alpha}$, and IL-6. LPS exposure significantly decreased the first polar body extrusion rate. The cytoplasmic maturation, characterized by polar body extrusion and distribution of peripheral cortical granules, was significantly impaired in LPS-treated oocytes. Moreover, LPS exposure significantly increased intracellular reactive oxygen species levels and the relative mRNA abundance of the antioxidants thioredoxin (Trx), Trx2, and peroxiredoxin 1 in oocytes. Moreover, the early apoptotic rate and the release of cytochrome C were significantly increased in response to LPS. The cleavage, morula, and blastocyst formation rates were significantly lower in parthenogenetically activated oocytes exposed to LPS, while the incidence of apoptotic nuclei in blastocysts was significantly increased. Conclusion: Together, these results provide an underlying mechanism by which LPS impairs maturation potential in bovine oocytes.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

Environmental Effect of the Reduced Slag in the Electric Furnace (전기로 제강 환원슬래그 혼합토의 환경적 영향)

  • Na, Hyunsu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.23-29
    • /
    • 2011
  • The oxidation slag has been widely used in civil engineering project, whereas the reduced slag from electric furnace has yet to be applied. Consequently in order to find out the recycling method in civil engineering field, the mineral compositions of the reduced slag were analyzed and some tests on water quality were performed to estimate the potential release of toxic compounds. Slag-soil mixtures of 0, 10, 20 and 30%(dry weight) soil were prepared in lysimeter columns and the effluents were collected with the period of one, two and four week options in closed system, respectively. The result from qualitative and quantitative analysis using X-ray Diffraction(XRD) and X-ray Fluorescence(XRF) indicates that the main mineral of the reduced slag is $Ca_2(SiO_4)$, a kind of calcium silicate. Also, the leaching medium analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy(ICP-OES) showed that main heavy metals such as Al, Fe and Mn are included in the reduced slag due to the effect of steel production process. It can be seen that the leachate does not violate the regulation guide line of waste material of heavy metal. Also the pH levels were increased from pH 6.9 for 0% soil to pH 10 for 30% soil. However the influence on leachate circulation period of one through four weeks was negligible.

Aromatic Agriculture: Volatile Compound-Based Plant Disease Diagnosis and Crop Protection (향기농업: 휘발성 물질을 이용한 식물병 진단과 방제)

  • Riu, Myoungjoo;Son, Jin-Soo;Oh, Sang-Keun;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • Volatiles exist ubiquitously in nature. Volatile compounds produced by plants and microorganisms confer inter-kingdom and intra-kingdom communications. Autoinducer signaling molecules from contact-based chemical communication, such as bacterial quorum sensing, are relayed through short distances. By contrast, biogenic volatiles derived from plant-microbe interactions generate long-distance (>20 cm) alarm signals for sensing harmful microorganisms. In this review, we discuss prior work on volatile compound-mediated diagnosis of plant diseases, and the use of volatile packaging and dispensing approaches for the biological control of fungi, bacteria, and viruses. In this regard, recent developments on technologies to analyze and detect microbial volatile compounds are introduced. Furthermore, we survey the chemical encapsulation, slow-release, and bio-nano techniques for volatile formulation and delivery that are expected to overcome limitations in the application of biogenic volatiles to modern agriculture. Collectively, technological advances in volatile compound detection, packaging, and delivery provide great potential for the implementation of ecologically-sound plant disease management strategies. We hope that this review will help farmers and young scientists understand the nature of microbial volatile compounds, and shift paradigms on disease diagnosis and management to aromatic (volatile-based) agriculture.

Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury

  • Yu, Yonghui;Zhang, Jingjie;Wang, Jing;Wang, Jing;Chai, Jiake
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.589-603
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Previous studies have reported that protein supplementation contributes to the attenuation of inflammation. Serious trauma such as burn injury usually results in the excessive release of inflammatory factors and organs dysfunction. However, a few reports continued to focus on the function of protein ingestion in regulating burn-induced inflammation and organ dysfunction. MATERIALS/METHODS: This study established the rat model of 30% total body surface area burn injury, and evaluated the function of blended protein (mixture of whey and soybean proteins). Blood routine examination, inflammatory factors, blood biochemistry, and immunohistochemical assays were employed to analyze the samples from different treatment groups. RESULTS: Our results indicated a decrease in the numbers of white blood cells, monocytes, and neutrophils in the burn injury group administered with the blended protein nutritional support (Burn+BP), as compared to the burn injury group administered normal saline supplementation (Burn+S). Expressions of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6 [IL-6]) and chemokines (macrophage chemoattractant protein-1, regulated upon activation normal T cell expressed and secreted factor, and C-C motif chemokine 11) were dramatically decreased, whereas anti-inflammatory factors (IL-4, IL-10, and IL-13) were significantly increased in the Burn+BP group. Kidney function related markers blood urea nitrogen and serum creatinine, and the liver function related markers alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were remarkably reduced, whereas albumin levels were elevated in the Burn+BP group as compared to levels obtained in the Burn+S group. Furthermore, inflammatory cells infiltration of the kidney and liver was also attenuated after burn injury administered with blended protein supplementation. CONCLUSIONS: In summary, nutritional support with blended proteins dramatically attenuates the burn-induced inflammatory reaction and protects organ functions. We believe this is a new insight into a potential therapeutic strategy for nutritional support of burn patients.

Inhibitory Effect of Dendrobium moniliforme on Degranulation and Histidine Decarboxylase Expression in RBL-2H3 Cells (RBL-2H3 세포에서 탈과립과 histidine decarboxylase 발현에 미치는 석곡(Dendrobium monilifrme)의 효과)

  • Young Ji Lee;Iskander Madhi;YoungHee Kim
    • Journal of Life Science
    • /
    • v.33 no.2
    • /
    • pp.176-182
    • /
    • 2023
  • The stems of Dendrobium moniliforme are used in traditional Oriental medicine as a Yin tonic to nourish the stomach, promote the production of body fluid, and reduce fever. This study investigated the effects of the aqueous extract of D. moniliforme stems (DME) on mast cell degranulation and the expression of tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and histamine-synthesizing enzyme histidine decarboxylase (HDC). We used rat mast cell line RBL-2H3 cells and stimulated them with PMA plus calcium ionophore (PMACI). Pretreatment with DME significantly inhibited PMACI-induced β-hexosaminidase release and the expression of TNF-α, IL-4, and HDC. Furthermore, DME suppressed PMACI-induced nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1). In addition, HDC expression was inhibited by SP600125 (JNK inhibitor), PD98059 (ERK inhibitor), and SB203580 (p38 kinase inhibitor). Finally, the phosphorylation of p38 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK) was inhibited by pretreatment with DME. These results suggest that DME has inhibitory effects against degranulation, cytokine (TNF-α and IL-4) and HDC expression, and that HDC expression is mediated by MAPK signaling. These findings suggest that DME may have therapeutic potential in the treatment of hypersensitive and inflammatory diseases.

Development of an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model (앙상블 기반의 악취 농도 다지역 통합 예측 모델 개발)

  • Seong-Ju Cho;Woo-seok Choi;Sang-hyun Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.383-400
    • /
    • 2023
  • Air pollution-related diseases are escalating worldwide, with the World Health Organization (WHO) estimating approximately 7 million annual deaths in 2022. The rapid expansion of industrial facilities, increased emissions from various sources, and uncontrolled release of odorous substances have brought air pollution to the forefront of societal concerns. In South Korea, odor is categorized as an independent environmental pollutant, alongside air and water pollution, directly impacting the health of local residents by causing discomfort and aversion. However, the current odor management system in Korea remains inadequate, necessitating improvements. This study aims to enhance the odor management system by analyzing 1,010,749 data points collected from odor sensors located in Osong, Chungcheongbuk-do, using an Ensemble-Based Multi-Region Integrated Odor Concentration Prediction Model. The research results demonstrate that the model based on the XGBoost algorithm exhibited superior performance, with an RMSE of 0.0096, significantly outperforming the single-region model (0.0146) with a 51.9% reduction in mean error size. This underscores the potential for increasing data volume, improving accuracy, and enabling odor prediction in diverse regions using a unified model through the standardization of odor concentration data collected from various regions.

Ecological Risk Assessment of 4,4'-Methylenedianiline (4,4'-Methylenedianiline의 환경매체별 위해성평가)

  • Hyun Soo Kim;Daeyeop Lee;Kyung Sook Woo;Si-Eun Yoo;Inhye Lee;Kyunghee Ji;Jungkwan Seo;Hun-Je Jo
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.334-343
    • /
    • 2023
  • Background: South Korea's Act on Registration and Evaluation, etc. of Chemicals (known as K-REACH) was established to protect public health and the environment from hazardous chemicals. 4,4'-Methylenedianiline (MDA), which is used as a major intermediate in industrial polymer production and as a vulcanizing agent in South Korea, is classified as a toxic substance under the K-REACH act. Although MDA poses potential ecological risks due to industrial emissions and hazards to aquatic ecosystems, no ecological risk assessment has been conducted. Objectives: The aim of this study is to assess the ecological risk of MDA by identifying the actual exposure status based on the K-REACH act. Methods: Various toxicity data were collected to establish predicted no effect concentrations (PNECs) for water, sediment, and soil. Using the SimpleBox Korea v2.0 model with domestic release statistical data and EU emission factors, predicted environmental concentrations (PECs) were derived for ten sites, each referring to an MDA-using company. Hazard quotient (HQ) was calculated by ratio of the PECs and PNECs to characterize the ecological risk posed by MDA. To validate the results of modeling-based assessment, concentration of MDA was measured using in-site freshwater samples (two to three samples per site). Results: PNECs for water, sediment, and soil were 0.000525 mg/L, 4.36 mg/kg dw, and 0.1 mg/kg dw, respectively. HQ for surface water and sediment at several company sites exceeded 1 due to modeling data showing markedly high PEC in each environmental compartment. However, in the results of validation using in-site surface water samples, MDA was not detected. Conclusions: Through an ecological risk assessment conducted in accordance with the K-REACH act, the risk level of MDA emitted into the environmental compartments in South Korea was found to be low.

Case Study of Deep Geological Disposal Facility Design for High-level Radioactive Waste (스웨덴 고준위방사성폐기물 심층처분시설의 설계 사례 분석)

  • Juhyi Yim;Jae Hoon Jung;Seokwon Jeon;Ki-Il Song;Young Jin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.312-338
    • /
    • 2023
  • The underground disposal facility for spent nuclear fuel demands a specialized design, distinct from conventional practices, to ensure long-term thermal, mechanical, and hydraulic integrity, preventing the release of radioactive isotopes from high-temperature spent nuclear fuel. SKB has established design criteria for such facilities and executed practical design implementations for Forsmark. Moreover, in response to subsurface uncertainty, SKB has proposed an empirical approach involving monitoring and adaptive design modifications, alongside stepwise development. SKB has further introduced a unique support system, categorizing ground types and behaviors and aligning them with corresponding support types to confirm safety through comparative analyses against existing systems. POSIVA has pursued a comparable approach, developing a support system for Onkalo while accounting for distinct geological characteristics compared to Forsmark. This demonstrates the potential for domestic implementation of spent nuclear fuel disposal facility designs and the establishment of a support system adapted to national attributes.