• Title/Summary/Keyword: relay element

Search Result 44, Processing Time 0.019 seconds

A Study on The Development and Function Test of Digital Transformer Protection Relay Using The Induced Voltage (유기전압비를 이용한 디지털형 변압기 보호계전기 개발 및 성능시험에 관한 연구)

  • Jung, Sung-Kyo;Lee, Jae-Kyung;Kim, Han-Do;Choi, Dae-Gil;Kang, Yong-Chul;Kang, Sang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.216-218
    • /
    • 2001
  • The transformer role is very important in power system operation and control; also its price is very expensive. Therefore many kinds of the efforts for transformer protection have been executed. So for as, current differential relay(87) has been mainly used for transformer protection. But current differential relaying method has several troubles as followings. Differential current can be occurred by transformers inrush current between winding1 and winding2 of transformer when transformer is initially energized. Also harmonic restrained element used in current differential relaying method is one of the causes of relays mal-operation because recently harmonics in power system gradually increase by power switching devices(SVC, FACTS, DSC, etc). Therefore many kinds of effort have been executed to solve the trouble of current differential relay and one of them is method using ratio of increment of flux linkages(RIFL) of the primary and secondary windings. This paper introduces a novel protective relay for power transformers using RIFL of the primary and secondary windings. Novel protective relay successfully discriminates between transformer internal faults and normal operation conditions including inrush and this paper includes real time test results using RTDS(Real Time Digital Simulator) for novel protective relay. A novel protective relay was designed using the TMS320C32 digital signal processor and consisted of DSP module. A/D converter module, DI/DO module, MMI interface module and LCD display module and developed by Xelpower co., Ltd.

  • PDF

Analysis on the Operation Characteristics and Protection Coordination between the Current Ratio Differential Relay for Line Protection and the Trigger-type SFCL in the Power Transmission System (송전급 초전도한류기의 적용에 따른 선로보호용 비율전류차동계전기의 동작특성 및 보호협조 분석)

  • Cho, Yong-Sun;Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.925-930
    • /
    • 2013
  • The fault current of the power transmission system is greater than that of the power distribution system. Therefore, the introduction of superconducting fault current limiter (SFCL) is more needed to reduce the increased fault current. The trigger-type SFCL consists of the high-temperature superconducting element (HTSC), the current limiting reactor (CLR) and the circuit breaker (CB). The trigger-type SFCL can be used to supplement the disadvantages of the resistive-type SFCL. The operation characteristics of the current ratio differential relay which is usually applied to the protection device of the power transmission system are expected to be affected under fault conditions and the applicability of the trigger-type SFCL. In this paper, we analyzed the operating characteristics, by the fault conditions, between the current ratio differential relay for line protection and the trigger-type SFCL in the power transmission system through the PSCAD/EMTDC simulation.

Low Complexity Power Allocation Scheme for MIMO Multiple Relay System With Weighted Diagonalization (다중 안테나 다중 중계 시스템을 위한 가중치 대각화 기반의 저 복잡도 전력 할당 기법)

  • Lee, Bumsoo;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.27-34
    • /
    • 2013
  • We propose a simple power allocation scheme for an amplify-and-forward multiple relay system with multiple-input multiple-output antennas. Unlike the existing relay precoding matrix with full elements, proposed precoder is a diagonal matrix whose diagonal element is the relay gain for each stream. Furthermore, a weight vector is applied to streams, such that the mutual information of the system approaches that of the exhaustive search scheme, regardless of the number of antennas. Numerical results show that proposed scheme outperforms the conventional schemes with respect to mutual information.

A Study of Periodic Solutions of Typical Relay Servo System (릴레이 제어기구 조기해법에 관한 연구)

  • 나계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.3
    • /
    • pp.1-14
    • /
    • 1971
  • A relay servo, one of the nonlinear sytsems, is inherently compact compared to a linear system for an equivalent control problem. The power element or actuator is not adjusted proportionally in accordance with an error signals but rather is switched abruptly between several discrete conditions. Usually switched conditions are off, full, forward or full reverse. The relay system is a particularly simple and compact one, but probably more effort has been expended on its analysis and design than on all other systems together. Early studies in the art were made by Goldfarb, austin, Oppelt and Kochenburger on the describing function method, which can be used as an approximate check on the stability of the system. The describing function method is based on the assumption that any periodic wave could be approximated as a fundamental one in wide ranges of practical applications. A relay servo system usually operates on a limit cycle condition as the loop gain increases. The stability analysis compensation or any improvement effort based on the describing function method sometimes may present considerable discrepancies on physically realized practical systems. An approach to exact periodic solutions of a relay servo system is much important for the analysis, design and system improvement. This paper dells with periodic solutions of a relay servo system on the basis of describing function and generalized chopper wave form which is composed of infinite number of harmonic series. Various ways of graphical representation were attempted to get periodic solutions, some of which have shown its validity in rapid approach to exact solutions and also in judgement of system behavior.

  • PDF

Analysis on Operational Characteristics of Distance Relay due to Application of Superconducting Fault Current Limiter in a Simulated Power Transmission System (모의 송전계통에 초전도한류기의 적용에 따른 거리계전기의 동작특성 연구)

  • Noh, Shin-Eui;Kim, Jin-Seok;Kim, Yi-Gwan;Kim, Jae-Chul;Lim, Sung-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.40-46
    • /
    • 2014
  • The development of the superconducting fault current limiter (SFCL) to apply into a power transmission system where makes larger fault current compared to the power distribution system has been performed. Among various SFCLs, the trigger-type SFCL is suitable for application into the power transmission system due to the effective reduction on power burden of the high temperature superconducting element (HTSC) for the larger fault current. To protect the power transmission line in the power grid, the distance relay, which decides to interrupt fault section where can be calculated by the measured voltage and current from sound grid, is one of important protective devices in the power transmission system. However, the operation of the distance relay from the impedance of the fault point on the transmission line is affected by the impedance of the trigger-type SFCL. Therefore, the analysis on the operational characteristics of distance relay considering the application of the SFCL is required. In this paper, the effect on the operation zones of the distance relay by the impedance of the SFCL in a power transmission system was analyzed through the PSCAD/EMTDC simulation.

Using Mobile Data Collectors to Enhance Energy Efficiency a nd Reliability in Delay Tolerant Wireless Sensor Networks

  • Yasmine-Derdour, Yasmine-Derdour;Bouabdellah-Kechar, Bouabdellah-Kechar;Faycal-Khelfi, Mohammed
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.275-294
    • /
    • 2016
  • A primary task in wireless sensor networks (WSNs) is data collection. The main objective of this task is to collect sensor readings from sensor fields at predetermined sinks using routing protocols without conducting network processing at intermediate nodes, which have been proved as being inefficient in many research studies using a static sink. The major drawback is that sensor nodes near a data sink are prone to dissipate more energy power than those far away due to their role as relay nodes. Recently, novel WSN architectures based on mobile sinks and mobile relay nodes, which are able to move inside the region of a deployed WSN, which has been developed in most research works related to mobile WSN mainly exploit mobility to reduce and balance energy consumption to enhance communication reliability among sensor nodes. Our main purpose in this paper is to propose a solution to the problem of deploying mobile data collectors for alleviating the high traffic load and resulting bottleneck in a sink's vicinity, which are caused by static approaches. For this reason, several WSNs based on mobile elements have been proposed. We studied two key issues in WSN mobility: the impact of the mobile element (sink or relay nodes) and the impact of the mobility model on WSN based on its performance expressed in terms of energy efficiency and reliability. We conducted an extensive set of simulation experiments. The results obtained reveal that the collection approach based on relay nodes and the mobility model based on stochastic perform better.

Development of an Algorithm for Detecting High Impedance Fault in Low Voltage DC Distribution System using Accumulated Energy of Fault Current (고장전류의 누적 에너지를 이용한 저압직류 배전계통의 고저항 지락고장 검출 알고리즘 개발)

  • Oh, Yun-Sik;Noh, Chul-Ho;Kim, Doo-Ung;Gwon, Gi-Hyeon;Han, Joon;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.71-79
    • /
    • 2015
  • Recently, new Low Voltage DC (LVDC) power distribution systems have been constantly researched as uses of DC in end-user equipment are increased. As in conventional AC distribution system, High Impedance Fault (HIF) which may cause a failure of protective relay can occur in LVDC distribution system as well. It, however, is hard to be detected since change in magnitude of current due to the fault is too small to detect the fault by the protective relay using overcurrent element. In order to solve the problem, this paper presents an algorithm for detecting HIF using accumulated energy in LVDC distribution system. Wavelet Singular Value Decomposition (WSVD) is used to extract abnormal high frequency components from fault current and accumulated energy of high frequency components is considered as the element to detect the fault. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed algorithm using ElectroMagnetic Transient Program (EMTP) software. Simulation results considering various conditions show that the proposed algorithm can be utilized to effectively detect HIF.

Servo Motor Control by On-Off Controller with Hysterisis (히스테리시스를 갖는 온-오프 제어기에 의한 서보모터의 제어)

  • 김영복;김성환;양주호;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.85-95
    • /
    • 1991
  • All physical systems are nonlinear to some degree. The examples are relay, backlash, deadzone, saturation element and so on. In the linear control system design, it is useful method to restrict the nonlinearity to the linearity of system over the operation range. It is worth noting that nonlinearities may be intentionally introduced in to a system. A simple of an intentional non-linearity is the Bang-Bang controller which uses the On-Off relay. In this paper, an angular position servosystem made of a DC servomotor controlled by a microcomputer is discribed. Authors use two methods in the design of controller. The one is linear controller designed by the optimal feedback control theory only and the other is nonlinear controller designed by On-Off relay with optimal feedback control theory. To do the real time control, the controller is designed by using 16bit personal computer and A/D.D/A converter(12bit) is used in order to convert the signal. According to this way, the results from real time control are as follows. 2) Under the On-Off controller with hysterisis the influence of disturbance is considerably smaller than the linerar controller. 3) An increase in the sampling period has a destabilizing effect. 4)In the controller performance, the response time of the On-Off controller is longer than that of the linear controller. To close, we note that the On-Off controller with hysterisis is more attractive than the linear controller in the presence of the input limit.

  • PDF

Wavefront Distortion caused by High Energy Laser Beam in the Relay Mirrors of the Laser Beam Director (고에너지 레이저빔에 의해 유발된 광집속장치 반사경 광파면 왜곡)

  • Choi, Jong-Ho;Kim, Yeon-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.2
    • /
    • pp.144-149
    • /
    • 2008
  • Thermal distortion of the laser mirrors which are the Coude mirrors of the laser beam director and the wavefront error caused by the thermal distortion are studied. Coude mirrors consist of three relay mirrors and one fast steering mirror. The mirrors have reflectivity of 99.5% with respect to the laser wavelength of $3.8\;{\mu}m$, and absorption of 500 W per second. Thermal distortion and its related wavefront errors are studied with laser beam irradiation for 5 seconds. For the relay mirror, the wavefront error is 334 nm_PV, 98 nm rms and for fast steering mirror, $11.5\;{\mu}m$_PV, $3{\mu}m$ rms.

The Study of FUSE Installing of PT in the trend of Digitalization and Convergence of Power Machinery. (디지탈화 및 복합화된 전력기기 변성기용 퓨즈 설치의 문제점)

  • Ok Yeon Ho;Lee Hyoung Mook;Hong Yeong Jae;Lee Eun Woong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.357-359
    • /
    • 2004
  • Fuse is the initial equipment of Protective Relay The installation standard of Fuse has been used for long time in Power Facilities. However according to the innovative development of Electric & Electronic element(=semiconductor) Technology, Protective Relay and other Power Equipments are being changed into Digitalization and Multi-Functional Convergence. In contrast with it, the installation standard of Fuse is just the same. There is a need to give careful consideration to it. This study will bear a Part of producing a safe and efficient Power by examining the current installation of primal 8f secondary 1'use in multi-functional PT of Power plant, giving a problem careful consideration and suggesting suitable countermeasures.

  • PDF