• Title/Summary/Keyword: relay channel

Search Result 399, Processing Time 0.026 seconds

Discrete-Time Gaussian Interfere-Relay Channel

  • Moon, Kiryang;Yoo, Do-Sik;Oh, Seong-Jun
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.299-310
    • /
    • 2016
  • In practical wireless relay communication systems, non-destination nodes are assumed to be idle not receiving signals while the relay sends messages to a particular destination node, which results in reduced bandwidth efficiency. To improve the bandwidth efficiency, we relax the idle assumption of non-destination nodes and assume that non-destination nodes may receive signals from sources. We note that the message relayed to a particular node in such a system gives rise to interference to other nodes. To study such a more general relay system, we consider, in this paper, a relay system in which the relay first listens to the source, then routes the source message to the destination, and finally produces interference to the destination in sending messages for other systems. We obtain capacity upper and lower bounds and study the optimal method to deal with the interference as well as the optimal routing schemes. From analytic results obtained, we find the conditions on which the direct transmission provides higher transmission rate. Next, we find the conditions, by numerical evaluation of the theoretical results, on which it is better for the destination to cancel and decode the interference. Also we find the optimal source power allocation scheme that achieves the lower bound depending on various channel conditions. We believe that the results provided in this paper will provide useful insights to system designers in strategically choosing the optimal routing algorithms depending on the channel conditions.

Partial CSI-Based Cooperative Power Allocation in Multi-Cell Dual-Hop MISO Relay Systems (다중-셀 이중-홉 MISO 릴레이 시스템에서 부분 채널 정보를 이용한 협력 전력 할당 기법)

  • Cho, Hee-Nam;Kim, Ah-Young;Lee, Jin-Woo;Lee, Young-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.887-895
    • /
    • 2009
  • This paper proposes a cooperative power allocation with the use of partial channel information (e.g., the average signal-to-noise ratio (SNR) and transmit correlation) in multi-cell dual-hop multi-input single-output (MISO) relay systems. In a dual-hop MISO relay channel, it is desirable to allocate the transmit power between dual-hop links to maximize the end-to-end capacity. We consider the maximization of the end-to-end capacity of a dual-hop MISO relay channel under sum-power constraint. The proposed scheme adaptively allocates the transmit power considering the average channel gain of the target relay and the transmit correlation of the desired and inter-relay interference channel from adjacent relays. It is shown by means of upper-bound analysis that the end-to-end capacity can be maximized by making the angle difference of the principal eigenvectors of the desired and inter-relay interference channel orthogonal in highly-correlated channel environments. Finally, the performance of the proposed scheme is verified by computer simulation.

Least Square Channel Estimation for Two-Way Relay MIMO OFDM Systems

  • Fang, Zhaoxi;Shi, Jiong
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.806-809
    • /
    • 2011
  • This letter considers the channel estimation for two-way relay MIMO OFDM systems. A least square (LS) channel estimation algorithm under block-based training is proposed. The mean square error (MSE) of the LS channel estimate is computed, and the optimal training sequences with respect to this MSE are derived. Some numerical examples are presented to evaluate the performance of the proposed channel estimation method.

Implementation and Test of RELAY Module for Multiple SNS Channels (다중 SNS 채널을 위한 RELAY 모듈의 구현 및 실험)

  • Ahn, Heui-Hak;Lee, Dae-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.362-369
    • /
    • 2018
  • In this paper, we propose a procedure to multiple SNS channels automatic streaming through multiple output channels including the output channel of an external streaming server. The multiple SNS channels automatic streaming server includes an output management module for controlling the transmission of video contents to RELAY module that establish two or more output channels. In this paper, we experimented by separate with HD and FHD video using RELAY module in multiple SNS channel automatic streaming. In stream modules using RELAY module of HD video, when the publisher client and the player client and the RELAY module are 1 channel, the occupancy rate of CPU is 0.6% and the occupancy rate of heap memory is 0.3%(20 Mbyte). When the publisher client and the player client and the RELAY module are 183 channels, the occupancy rate of CPU is 99.9% and the occupancy rate of heap memory is 45.8%(3.7Gbyte). Therefore, the paper is not limited to the size of the streaming server by extending the output channel from which the video is transmitted to the output channel of the external streaming server. And a process of allocating an output channel of an external streaming server to an output channel through which an video is transmitted can be easily performed, so that an efficient output channel management can be performed even when a plurality of videos are transmitted.

Interference Alignment in Two-way Relay Channel with Compute-and-Forward

  • Jiang, Xue;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.593-607
    • /
    • 2016
  • This paper analyzes interference alignment in the two-way relay network with compute-and-forward in both single relay and multiple relays networks. The advantages of compute-and-forward over other relaying strategies are that it can relay only linear combinations of the useful signals and remove the noise. The algorithm proposed in this paper adopts the criterion of maximum SINR to derive the pre-coding matrix. The experimental results show that the performance of interference alignment in two-way relay channel via compute-and-forward is better than that of amplify-and-forward, and the total sum rate in the two-way multiple relay networks is larger than that in the two-way single relay networks.

Channel Selective Relay-based Transmission System for Broadband Wireless Communications (광대역 무선 이동 통신을 위한 채널 선택적 릴레이 기반 전송 시스템)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.8-15
    • /
    • 2009
  • Relay-assisted multi-input multi-output (MIMO) technique has become a promising candidate for next generation broadband wireless communications for high speed access. In this paper, we propose channel selective relay-based MIMO transmission system. The performance of relay-based system can be improved by using the subcarriers selectively based on the channel condition between relay and mobile station. Simulation results show that the proposed relay-based system considerably outperforms the conventional relay-based system.

Relay Selection Algorithm for Two-way Multiple Relay Channels (양방향 다중 중계기 채널에서의 중계기 선택 기법)

  • Kang, Yoo-Keun;Lee, Jae-Hong
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.134-143
    • /
    • 2009
  • In this paper, we propose a new relay selection algorithm for a two-way multiple relay channel. In the two-way multiple relay channel, two users exchange information with each other via multiple relays. The relays use a decode-and-forward or amplify-and-forward protocol, and exploit the combining process of the received packets to reduce the required channel resources. In the multiple relay network, diversity gain is achieved as the number of relays increases, and various schemes are proposed. In this paper, we propose a single best relay selection scheme based on instantaneous channel conditions. First of all, relays obtain the instantaneous channel state information in the handshaking process, and a single best relay is selected in a distributed methods prior to data transmissions. The relay selection metric is proposed so that the end-to-end channel condition is evaluated based on the intantaneous channel state informations. Simulation results show that the proposed relay selection algorithm achieve the increased throughput and diversity order when the number of potential relays is increased.

Active Transmission Scheme to Achieve Maximum Throughput Over Two-way Relay Channel (양방향 중계채널에서 최대 전송률을 위한 동적 전송 기법)

  • Park, Ji-Hwan;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.31-37
    • /
    • 2009
  • In the two-way relay channel, the relay employ Amplify-and-Forward (AF) or Decode-and-Forward (DF) protocol, and broadcast the network-coded signal to both user. In the system, DF protocol provides maximum throughput at low signal to noise ratio(SNR). On the other hand, at high SNR, AF protocol provides maximum throughput. The paper propose active transmission scheme which employ Amplify-and-Forward or Decode-and-Forward protocol based on received SNR at the relay over Two-way relay channel. The optimal threshold is investigated numerically for switching the protocol. Through numerical results, we confirm that the proposed scheme outperforms conventional schemes over two-way relay channel.

  • PDF

Power Allocation for Half-duplex Relay-based D2D Communication with QoS guarantee

  • Dun, Hui;Ye, Fang;Jiao, Shuhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1311-1324
    • /
    • 2019
  • In the traditional cellular network communication, the cellular user and the base station exchange information through the uplink channel and downlink channel. Meanwhile, device-to-device (D2D) users access the cellular network by reusing the channel resources of the cellular users. However, when cellular user channel conditions are poor, not only D2D user cannot reuse its channel resources to access the network, but also cellular user's communication needs cannot be met. To solve this problem, we introduced a novelty D2D communication mechanism in the downlink, which D2D transmitter users as half-duplex (HD) relays to assist the downlink transmission of cellular users with reusing corresponding spectrum. The optimization goal of the system is to make the cellular users in the bad channel state meet the minimum transmission rate requirement and at the same time maximize the throughput of the D2D users. In addition, i for the purpose of improving the efficiency of relay transmission, we use two-antenna architecture of D2D relay to enable receive and transmit signals at the same time. Then we optimized power of base station and D2D relay separately with consideration of backhaul interference caused by two-antenna architectures. The simulation results show that the proposed HD relay strategyis superior to existing HD and full-duplex (FD) models in the aspects of system throughput and power efficiency.

Outage Performance of Partial Relay Selection in Dual-Hop Decode-and-Forward Relaying Systems (듀얼 홉 디코딩 후 전달 중계 시스템에서 부분 중계 노드 선택 기법의 아웃티지 성능 연구)

  • Lee, In-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.40-47
    • /
    • 2012
  • In dual-hop relaying systems, the conventional partial relay selection is based on the channel information only for the first hop. On the other hand, the efficient partial relay selection is based on the channel information for the hop with the minimum of the average channel powers for the first and second hops at each end-to-end link since the correlation coefficient between the end-to-end link quality and the link quality of the hop with the minimum of the average channel powers for the first and second hops is larger than that between the end-to-end link quality and the link quality of the other hop. In this paper, the outage probability of the conventional partial relay selection and the efficient partial relay selection in dual-hop decode-and-forward relaying systems is analyzed for non-identically distributed Rayleigh fading channels. Through numerical investigation, the outage performance of the efficient partial relay selection is compared with the outage performances of the conventional partial relay selection and the best relay selection based on all the channel information for the first and second hops.