다중-셀 이중-홉 MISO 릴레이 시스템에서 부분 채널 정보를 이용한 협력 전력 할당 기법

Partial CSI-Based Cooperative Power Allocation in Multi-Cell Dual-Hop MISO Relay Systems

  • 조희남 (서울대학교 전기공학부 송수신기술 연구실) ;
  • 김아영 (서울대학교 전기공학부 송수신기술 연구실) ;
  • 이진우 (서울대학교 전기공학부 송수신기술 연구실) ;
  • 이용환 (서울대학교 전기공학부 송수신기술 연구실)
  • 발행 : 2009.09.30

초록

본 논문은 다중 안테나를 가진 릴레이가 설치된 다중-셀 다중-사용자 시스템에서 부분 채널 정보를 이용하여 기지국과 릴레이 간 협력적으로 전력을 할당하는 기법을 제안한다. 이중-흡 MISO (Multi-Input Single-Output) 릴레이 채널에서, 릴레이 채널 용량(end-to-end capacity)을 최대화하기 위해 홉 간 송신 전력을 채널 상태에 따라 동적으로 할당할 필요가 있다. 제안된 기법은 목표 릴레이의 평균 채널 이득과 인접 릴레이로부터의 원하는 채널과 간섭 채널의 송신 상관 행렬의 주요한 고유벡터의 상대적인 각도 차이를 고려하여 릴레이 송신 전력을 동적으로 할당한다. 상향-경계치 분석을 통해서 릴레이 채널 용량은 원하는 채널과 간섭 채널의 주요한 고유벡터의 상대적인 각도 차이가 직교가 될 때 최대가 됨을 이론적으로 증명하였다.

This paper proposes a cooperative power allocation with the use of partial channel information (e.g., the average signal-to-noise ratio (SNR) and transmit correlation) in multi-cell dual-hop multi-input single-output (MISO) relay systems. In a dual-hop MISO relay channel, it is desirable to allocate the transmit power between dual-hop links to maximize the end-to-end capacity. We consider the maximization of the end-to-end capacity of a dual-hop MISO relay channel under sum-power constraint. The proposed scheme adaptively allocates the transmit power considering the average channel gain of the target relay and the transmit correlation of the desired and inter-relay interference channel from adjacent relays. It is shown by means of upper-bound analysis that the end-to-end capacity can be maximized by making the angle difference of the principal eigenvectors of the desired and inter-relay interference channel orthogonal in highly-correlated channel environments. Finally, the performance of the proposed scheme is verified by computer simulation.

키워드

참고문헌

  1. I. E. Telatar, 'Capacity of multi-antenna Gaussian channels,' Europ. Trans. Telecommun., vol. 10, no. 6, pp. 585-595, Nov. 1999 https://doi.org/10.1002/ett.4460100604
  2. G. J. Foschini and M. J. Gans, 'On limits of wireless communications in a fading environment when using multiple antennas,' Wireless Personal Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998 https://doi.org/10.1023/A:1008889222784
  3. A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, 'Capacity limits of MIMO channels,' IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684-702, June 2003 https://doi.org/10.1109/JSAC.2003.810294
  4. G. Caire and S. Shamai, 'On the achievable throughput of a multipleantenna Gaussian broadcast channel,' IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691-1706, July 2003 https://doi.org/10.1109/TIT.2003.813523
  5. T. M. Cover and A. A. El Gamal, 'Capacity theorems of the relay channel,' IEEE Trans. Inf. Theory, vol. 25, no. 5, pp. 572-584, Sept. 1979 https://doi.org/10.1109/TIT.1979.1056084
  6. B. Wang, J. Zhang, and A. Host-Madson, "On the capacity of MIMO relay channels," IEEE Trans. Inf. Theory, vol. 51, no. 1, pp. 29-43, Jan. 2005 https://doi.org/10.1109/TIT.2004.839487
  7. H. Bolcskei, R. U. Nabar, O. Oyman, and A. J. Paulraj, 'Capacity scaling laws in MIMO relay networks,' IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1433-1444, June 2006 https://doi.org/10.1109/TWC.2006.1638664
  8. Y. Liang and V. V. Veeravalli, 'Gaussian orthogonal relay channels: optimal resource allocation and capacity,' IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3284-3289, Sept. 2005 https://doi.org/10.1109/TIT.2005.853305
  9. Y. Liang, V. V. Veeravalli, and H. V. Poor, 'Resource allocation for wireless fading relaychannels: max-min solution,' IEEE Trans. Inf. Theory, vol. 53, no. 10, pp. 3432-3453, Oct. 2007 https://doi.org/10.1109/TIT.2007.904996
  10. M. Dohler, A. Gkelias, and H. Aghvami, '2-hop distributed MIMO communication systems,' IEEE Electron. Lett., vol. 39, no. 18, pp. 1350- 1351, Sept. 2003 https://doi.org/10.1049/el:20030814
  11. H.-N. Cho, J.-W. Lee, and Y.-H. Lee, 'Optimum power allocation for beamforming-based regenerative dual-hop MISO relay channels,' in Proc. IEEE Veh. Technol. Conf., Apr. 2009
  12. A.-Y. Kim, H.-N. Cho, and Y.-H. Lee, 'An adaptive power allocation in spatially correlated dual-hop MIMO relay channels," in Proc. IWCMC'09, June 2009
  13. M. Dohler, A. Gkelias, and H. Aghvami, 'A resource allocation strategy for distributed MIMO multi-hop communication systems,' IEEE Commun. Lett., vol. 8, no. 2, pp. 99-101, Feb. 2004 https://doi.org/10.1109/LCOMM.2004.823425
  14. T. C.-Y. Ng and W. Yu, 'Joint Optimization of Relay Strategies and Resource Allocations in Cooperative Cellular Networks,' J. Sel. Area. Commu. pp. 328-339, Feb. 2007 https://doi.org/10.1109/JSAC.2007.070209
  15. S. Catreux, P. F. Driessen, and L. J. Freenstein, 'Simulation results for an interference-limited multiple-input multiple-output cellular system,' IEEE Commun. Lett., vol. 4, no. 11, pp. 334-336, Nov. 2000 https://doi.org/10.1109/4234.892193
  16. Z. Yan and Z. Haitao, 'Understanding the impact of interference on collaborative relays,' IEEE Trans. Mobile Comput., vol. 7, no. 6, pp. 724-736, June 2008 https://doi.org/10.1109/TMC.2007.70790
  17. M. T. Ivrlac, W. Utschick, and J. A. Nossek, 'Fading correlations in wireless MIMO communication systems,' IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 819-828, June 2003 https://doi.org/10.1109/JSAC.2003.810348
  18. H.-N. Cho, J.-W. Lee, A.-Y. Kim, and Y.-H. Lee, 'Cooperative interference mitigation with partial CSI in multi-user dual-hop MISO relay channels,' in Proc. PIMRC'09, Sept. 2009
  19. J.-W. Lee, J.-W. Ko, and Y.-H. Lee, 'Effect of transmit correlation on the sum-rate capacity of two-user broadcast channels,' IEEE Trans. Commun., 2009, to appear https://doi.org/10.1109/TCOMM.2009.09.070513
  20. V. Poor, An Introduction to Signal Detection and Estimation, Springer, 1994
  21. A. Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge, 2003
  22. D. Tse and P. Vishwanath, Fundamentals of Wireless Communication, Cambridge University Press., 2005