• 제목/요약/키워드: relaxation vibration

Search Result 33, Processing Time 0.023 seconds

Temperature Dependence of the Vibration-Vibration Energy Transfer in the Deexcitaion of NO(2) by NO(0)

  • Ree, Jong-Baik;Sohn, Chang-Kook;Lee, Chang-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.449-453
    • /
    • 1987
  • The temperature dependence of the vibrational relaxation of NO(= 2) by NO(v = 0) has been investigated over the temperature range 100-3000 K. We have assumed that the deexcitation of NO(2) by NO(0) undergoes vibration-to-vibration (VV) energy exchange with the transfer of the energy mismatch ${\Delta}$E through rotation (R) and translation(T). The relaxation rate constants are calculated by solving the time-dependent Schrodinger equation. The sum of V-V, T, and V-V, R contributions shows very weak temperature dependence and is in reasonable agreement with observed data over the temperature range 300-3000 K.

Vibrational Relaxation and Bond Dissociation in Methylpyrazine on Collision with N2 and O2

  • Young-Jin Yu;Sang Kwon Lee;Jongbaik Ree
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.407-414
    • /
    • 2023
  • The present study uses quasi-classical trajectory procedures to examine the vibrational relaxation and dissociation of the methyl and ring C-H bonds in excited methylpyrazine (MP) during collision with either N2 or O2. The energy-loss (-ΔE) of the excited MP is calculated as the total vibrational energy (ET) of MP is increased in the range of 5,000 to 40,000cm-1. The results indicate that the collision-induced vibrational relaxation of MP is not large, increasing gradually with increasing ET between 5,000 and 30,000 cm-1, but then decreasing with the further increase in ET. In both N2 and O2 collisions, the vibrational relaxation of MP occurs mainly via the vibration-to-translation (V→T) and vibration-to-vibration (V→V) energy transfer pathways, while the vibration-to-rotation (V→R) energy transfer pathway is negligible. In both collision systems, the V→T transfer shows a similar pattern and amount of energy loss in the ET range of 5,000 to 40,000cm-1, whereas the pattern and amount of energy transfer via the V→V pathway differs significantly between two collision systems. The collision-induced dissociation of the C-Hmethyl or C-Hring bond occurs when highly excited MP (65,000-72,000 cm-1) interacts with the ground-state N2 or O2. Here, the dissociation probability is low (10-4-10-1), but increases exponentially with increasing vibrational excitation. This can be interpreted as the intermolecular interaction below ET = 71,000 cm-1. By contrast, the bond dissociation above ET = 71,000 cm-1 is due to the intramolecular energy flow between the excited C-H bonds. The probability of C-Hmethyl dissociation is higher than that of C-Hring dissociation.

The Effect of Stress Reduction of Human Body by the Vibroacoustic Equipment (음향진동장치에 의한 인체의 스트레스 저감 효과)

  • Moon, D.H.;Kim, Y.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.32-37
    • /
    • 2007
  • The present study describes the effects of music and vibroacoustic stimuli to the relaxation of human body. We have carried out the experiment on 6 human subjects of which are composed 3 men and 3 women. We have investigated the electroencephalogram(EEG) of all subjects before and after the stimuli of which are made a strong noise or the meditatiom music and the acoustic vibration. The vibroacoustic device has transmitted meditation music as vibration between 20Hz and 250Hz to the body. From the experimental results, we made sure the effects that the meditation music and vibroacoustic stimuli influenced the stress reduction of human body for good as alpha wave was increased continuously during the good stimuli and after that.

  • PDF

Large-scale and small-scale self-excited torsional vibrations of homogeneous and sectional drill strings

  • Gulyayev, V.I.;Glushakova, O.V.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.291-311
    • /
    • 2011
  • To simulate the self excited torsional vibrations of rotating drill strings (DSs) in vertical bore-holes, the nonlinear wave models of homogeneous and sectional torsional pendulums are formulated. The stated problem is shown to be of singularly perturbed type because the coefficient appearing before the second derivative of the constitutive nonlinear differential equation is small. The diapasons ${\omega}_b\leq{\omega}\leq{\omega}_l$ of angular velocity ${\omega}$ of the DS rotation are found, where the torsional auto-oscillations (of limit cycles) of the DS bit are generated. The variation of the limit cycle states, i.e. birth (${\omega}={\omega}_b$), evolution (${\omega}_b<{\omega}<{\omega}_l$) and loss (${\omega}={\omega}_l$), with the increase in angular velocity ${\omega}$ is analyzed. It is observed that firstly, at birth state of bifurcation of the limit cycle, the auto-oscillation generated proceeds in the regime of fast and slow motions (multiscale motion) with very small amplitude and it has a relaxation mode with nearly discontinuous angular velocities of elastic twisting. The vibration amplitude increases as ${\omega}$ increases, and then it decreases as ${\omega}$ approaches ${\omega}_l$. Sectional drill strings are also considered, and the conditions of the solution at the point of the upper and lower section joints are deduced. Besides, the peculiarities of the auto-oscillations of the sectional DSs are discussed.

The Effect of Stress Reduction of Human Body by the Vibroacoustic Equipment (음향진동장치에 의한 인체의 스트레스 저감효과)

  • Moon, D.H.;Kim, Y.W.;Kang, H.J.;Choi, M.S.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1063-1068
    • /
    • 2007
  • The present study describes the effects of music and vibroacoustic stimuli to the relaxation of human body. We have carried out the experiment on 6 human subjects of which are composed 3men and 3women. We have investigated the electroencephalogram(EEG) of all subjects before and after the stimuli of which are made a strong noise or the meditatiom music and the acoustic vibration. The vibroacoustic device has transmitted meditation music as vibration between 20Hz and 250Hz to the body. From the experimental results, we made sure the effects that the meditation music and vibroacoustic stimuli influenced the stress reduction of human body for good as alpha-wave was increased continuously during the good stimuli and after that.

  • PDF

Free and forced vibration analysis of FG-CNTRC viscoelastic plate using high shear deformation theory

  • Mehmet Bugra Ozbey;Yavuz Cetin Cuma;Ibrahim Ozgur Deneme;Faruk Firat Calim
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.413-426
    • /
    • 2024
  • This paper investigates the dynamic behavior of a simply supported viscoelastic plate made of functionally graded carbon nanotube reinforced composite under dynamic loading. Carbon nanotubes are distributed in 5 different shapes: U, V, A, O and X, depending on the shape they form through the thickness of the plate. The displacement fields are derived in the Laplace domain using a higher-order shear deformation theory. Equations of motion are obtained through the application of the energy method and Hamilton's principle. The resulting equations of motion are solved using Navier's method. Transforming the Laplace domain displacements into the time domain involves Durbin's modified inverse Laplace transform. To validate the accuracy of the developed algorithm, a free vibration analysis is conducted for simply supported plate made of functionally graded carbon nanotube reinforced composite and compared against existing literature. Subsequently, a parametric forced vibration analysis considers the influence of various parameters: volume fractions of carbon nanotubes, their distributions, and ratios of instantaneous value to retardation time in the relaxation function, using a linear standard viscoelastic model. In the forced vibration analysis, the dynamic distributed load applied to functionally graded carbon nanotube reinforced composite viscoelastic plate is obtained in terms of double trigonometric series. The study culminates in an examination of maximum displacement, exploring the effects of different carbon nanotube distributions, volume fractions, and ratios of instantaneous value to retardation times in the relaxation function on the amplitudes of maximum displacements.

The Vibration Characteristic of Optimizing Snubber of Reciprocating Type Hydrogen Compressor for Pressure Loss Reduction (압력 손실을 줄이기 위해 최적화된 왕복동식 수소 압축기용 완충기의 진동 특성 분석)

  • Kim, W.C.;Kim, H.J.;Jeong, J.H.;Jang, Y.S.;Choi, B.K.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1116-1122
    • /
    • 2008
  • The reciprocating type hydrogen compressor has a pulsation due to the reciprocative characteristics which results in noise and vibration. Snubber is installed for the relaxation of pulsation, but it causes reduction of compressor efficiency because of pressure loss. Five types of snubber were modeled for the numerical investigation of the effect of the relative position of inlet and outlet and buffer angle on the pulsation amplitude and pressure loss. MSC/NASTRAN is used as a numerical tool to identify the vibration characteristic of each type. Frequency responses in forced vibration mode are compared for various cases and buffer angles.

Nonlinear finite element model updating with a decentralized approach

  • Ni, P.H.;Ye, X.W.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.683-692
    • /
    • 2019
  • Traditional damage detection methods for nonlinear structures are often based on simplified models, such as the mass-spring-damper and shear-building models, which are insufficient for predicting the vibration responses of a real structure. Conventional global nonlinear finite element model updating methods are computationally intensive and time consuming. Thus, they cannot be applied to practical structures. A decentralized approach for identifying the nonlinear material parameters is proposed in this study. With this technique, a structure is divided into several small zones on the basis of its structural configuration. The unknown material parameters and measured vibration responses are then divided into several subsets accordingly. The structural parameters of each subset are then updated using the vibration responses of the subset with the Newton-successive-over-relaxation (SOR) method. A reinforced concrete and steel frame structure subjected to earthquake loading is used to verify the effectiveness and accuracy of the proposed method. The parameters in the material constitutive model, such as compressive strength, initial tangent stiffness and yielding stress, are identified accurately and efficiently compared with the global nonlinear model updating approach.

Analysis on the Changes in Muscle Function of the Leg Joint in Athletics Athletes Through by Whole Body Vibration Exercise Training (전신진동(Whole body vibration)운동훈련을 통한 육상 투척선수의 하지관절 근육 기능변화에 관한 분석)

  • Lee, Youngsun;Yoon, Changsun;Han, KiHoon;Kim, Jinhyun;Hah, Chongku;Park, Joonsung;Kim, Jongbin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.250-260
    • /
    • 2021
  • The purpose of this study is to investigate muscle function and symmetry index during whole body vibration exercise using lower extremity training posture for throwing athletes. For throwing athletes in their 20s(6 males, 4 females, age: 24.60±0.92years, height: 177.90±7.40cm, weight: 92.90±22.97kg), lower extremity training postures with squat, carphrase, and lunge movements. Whole body vibration exercise training was performed using. Tensiomyography(TMG) variables Time Delay(Td), Time Contraction(Tc), Time Sustain(Ts) Time Relaxation(Tr), and Displacement Maximumal(Dm) in the lower extremity joint muscles(biceps femoris(BF), gastrocnemius lateral(GL), gastrocnemius medial(GM), rectus femoris(RF), tibialis anterior(TA), lateral vastus(LV), medial latissimus(ML)), were measured to compare and analyze muscle activity, muscle fatigue, and left-right symmetry. The results of the study are left RF, VL, right VM (p<.05) in Td, VM (p<.05) in Tc, GM in Ts (p<.05), left RF in Tr, and right TA (p<. 05) showed a change. Therefore, it has been proven that various whole-body vibration training is an effective exercise with changes in muscle contraction, and stability of the core is secured by symmetry of the left and right muscles. For this reason, the whole body vibration exercise will have a positive effect on rehabilitation training, and it is believed that it will be able to improve performance.

Intermolecular Interaction and Molecular Energy Transfer ; Vibrational Relaxation of Highly Excited HF and DF (문자간 상호작용과 에너지이동에 대한 이론적 연구 ; 높은 振動準位로 들뜬 HF 및 DF 의 振動緩和)

  • Chang Soon Lee;Min Joo Lee;Yoo Hang Kim
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.592-598
    • /
    • 1985
  • The total vibrational deexcitation rate constants $k_{v,v-1}$ of HF(v = 5-7) by HF(${\mu}$ = 0) and DF(${\mu}$ = 9-12) by DF(${\mu}$= 0) including both the vibration to vibration (V ${\to}$ V) and vibration to rotation and translation (V ${\to}$ R, T) energy transfer channels have been calculated semiclas-sically using a simplified collision model. The calculated results are in reasonably good agreement with those obtained by experimental and other theoretical studies. The rate constants increase with increasing temperature and also with increasing v. They also show that the relaxation of the highly excited HF and DF occurs predominantly via the V ${\to}$ R, T path at low temperature. The effectiveness of the V ${\to}$ V path, however, increases as the temperature is raised.

  • PDF