• Title/Summary/Keyword: relative stiffness

Search Result 372, Processing Time 0.027 seconds

Evaluation of Structural Performance of Multi-tiered Roof Korean Traditional Timber Building Daeungbojeon Hall of Magoksa Temple Under Vertical Load (중층 전통 목조건축 마곡사 대웅보전의 수직하중에 대한 구조성능 평가)

  • Yeong-Min Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.17-24
    • /
    • 2024
  • This paper assesses the structural performance of the Daeungbojeon Hall of Magoksa in Gongju, a representative multi-tiered roof traditional timber structure from the Joseon Dynasty, under vertical loads. Employing midas Gen, a structural analysis software, we developed a three-dimensional analysis model closely resembling the actual structure. Static analysis was employed to evaluate the safety and serviceability of the main vertical and horizontal members under vertical loads. While all members met the safety and serviceability criteria, structural weaknesses were identified in the Daelyang of the lower floor, particularly as a transitional beam, necessitating improvement. For the evaluation of dynamic behavior characteristics, eigenvalue analysis was conducted, assuming a relative rotational stiffness of 5% at the main joints. The natural period was determined to be 1.105 seconds, placing it within the category of a Hanok of similar size. The first mode manifested as a translational movement in the forward and backward direction of the building.

Performance enhancement of base-isolated structures on soft foundation based on smart material-inerter synergism

  • Feng Wang;Liyuan Cao;Chunxiang Li
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2024
  • In order to enhance the seismic performance of base-isolated structures on soft foundations, the hybrid system of base-isolated system (BIS) and shape memory alloy inerter (SMAI), referred to as BIS+SMAI, is for the first time here proposed. Considering the nonlinear hysteretic relationships of both the isolation layer and SMA, and soil-structure interaction (SSI), the equivalent linearized state space equation is established of the structure-BIS+SMAI system. The displacement variance based on the H2 norm is then formulated for the structure with BIS+SMAI. Employing the particle swarm optimization, the optimization design methodology of BIS+SMAI is presented in the frequency domain. The evolvement rules of BIS+SMAI in the effectiveness, robustness, SMA driving force, inertia force, stroke, and damping enhancement effect are revealed in the frequency domain through changing the inerter-mass ratio, structural height, aspect ratio, and relative stiffness ratio between the soil and structure. Meanwhile, the validation of BIS+SMAI is conducted using real earthquake records. Results demonstrate that BIS+SMAI can effectively reduce the isolation layer displacement. The inerter can significantly increase the hysteretic displacement of SMA and thus enhance its energy dissipation capacity, implying that BIS+SMAI has better effectiveness than BIS+SMA. Although BIS+SMAI and BIS+ tuned inerter damper (TID) have practically the same effectiveness, BIS+SMAI has the lower optimum damping, significantly smaller inertia force, and higher robustness to perturbations of the optimum parameters. Therefore, BIS+SMAI can be used as a more engineering realizable hybrid system for enhancing the performance of base-isolated structures in soft soil areas.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

Stability Analysis of a Haptic System with a Human Impedance model using the Routh-Hurwitz Criterion (루드-후르비쯔 (Routh-Hurwitz) 안정성 판별법을 이용한 인간의 임피던스가 포함된 햅틱 시스템의 안정성 분석)

  • Lee, Kyungno
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1813-1818
    • /
    • 2014
  • This paper presents the stability analysis of the haptic system including a human impedance using the Routh-Hurwitz criterion. The reflective force is computed from a virtual spring model and is transferred to a human operator using the first-order-hold method. The stability boundary conditions are induced and the relation among a virtual spring ($K_w$), the mass ($M_h$), the damping ($B_h$) and the stiffness ($K_h$) of a human impedance is analyzed. Hence the stability boundary of the virtual spring ($K_w$) is proposed as $K_w{\leq}54413{\sqrt{(M_h+M_d)(B_h+B_d)}}-0.486K_h$ when the sampling time is 1 ms. The average relative error is about 0.5% when the mathematical analysis results are compared with the results of the stability boundary model.

The Ultimate Bearing Capacity and Estimation Method of Rigid Pile for Port Structures under Lateral Load (횡하중이 작용하는 항만구조물에서 짧은말뚝의 극한지지력 및 평가방법)

  • Kim, Byung-Il;Han, Sang-Jae;Kim, Jong-Seok;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2014
  • In this study the analysis is performed for influencing factors on the behavior of rigid piles (short pile) by research papers and case study. The results indicated that the point of virtual fixity should be calculated considering the relative stiffness of soil and pile, and Chang (1937) and P-Y method estimated the similar fixity. The values of ultimate resistances of a vertical pile to a lateral load are different for laboratory and field tests in cohesive soils and its ultimate values in laboratory tests are underestimated and in field tests are under or overestimated. The estimated resistance by Hansen (1961)'s method is similar to the value of field tests. The horizontal resistances to laterally loaded pile in cohesionless soils are overestimated in laboratory tests and generally overestimated in field tests. The ultimate resistances by Zhang (2005)'s method, used to the empirical distribution of the resistance, are similar to the test results. In the paper the calculating method and distribution of the ultimate resistance in cohesive soils are proposed. The estimated value by the proposed method is closer to the test results than any other method of calculating ultimate resistance of the piles embedded into cohesive soils.

Pseudo Dynamic Test Study on Seismic Performance Evaluation of RC Columns Retrofitted by PolyUrea (내진보강용 폴리우레아로 보강된 철근콘크리트 기둥의 내진성능 평가에 대한 유사동적실험 연구)

  • Cho, Chul Min;Lee, Doo Sung;Kim, Tae Kyun;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.289-301
    • /
    • 2017
  • As earthquakes have frequently happened all over the world, huge losses of human life and property have occurred. Therefore, retrofitting and strengthen technologies of non-seismically designed structures in Korea are urgent. Also, there has been a growing interest about seismic retrofitting, where researches on the topic have been actively pursued in Korea. The study results showed that ductility inducing retrofitting method is more superior stiffness inducing method. In Japan, Super Reinforcement with Flexibility (SRF) was introduced. Therefore, in this study, seismic performance evaluation was performed through pseudo dynamic test and uniaxial compression test for RC column retrofitted by PolyUrea for ductility inducing retrofitting material. Uniaxial compression test results showed that strength of all specimens retrofitted by PolyUrea was higher than that of RC specimens. Also, all specimens retrofitted by PolyUrea also showed ductile fracture behavior. In pseudo dynamic test, by appling real earthquake record, the seismic behavior of RC column reinforced by PolyUrea was evaluated through relative displacement, reinforcement strain, displacement ductility, and dissipation energy. The results showed that PolyUrea helped to enhance seismic performance of RC columns.

Effects of Corrugated GFRP Shear Connector Width and Pitch on In-plane Shear Behavior of Insulated Concrete Sandwich Wall Panels (CSWP) (파형 GFRP 전단연결재의 폭 및 너비에 따른 중단열 벽체의 면내전단거동)

  • Jang, Seok-Joon;Oh, Tae-Sik;You, Young-Chan;Kim, Ho-Royng;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.421-428
    • /
    • 2014
  • This paper describes the experimental results of insulated concrete sandwich wall panels (CSWP) with corrugated glass fiber-reinforced polymer (GFRP) shear connectors under in-plane shear loading. Corrugated GFRP shear connectors were used to improve the thermal property of insulated CSWP and to achieve composite action between the interior and exterior concrete wall panels. Test specimens were consist of three concrete panels with two insulation layers between concrete panels and middle concrete panels was loaded in the direction of gravity. To evaluate the effects of insulation types (extruded polystyrene, XPSS and expanded polystyrene, EPS), shear connector pitch (300 and 400 mm) and width (10 and 15 mm) on in-plane shear behavior of insulted CSWP, failure mode and shear flow-average relative slip relationship of specimens were investigated. Test results indicate that the bond stress between concrete panel and insulation is considerable initially. Especially in case of insulated CSWP without shear connector, initial stiffness of CSWP with XPSS is superior to that of CSWP with EPS. The shear connector's contribution to in-plane shear performance of insulated CSWP depends on the type of insulation.

Soil-Water Characteristic Curve of Sandy Soils Containing Biopolymer Solution (바이오폴리머를 포함한 모래지반의 흙-습윤 특성곡선 연구)

  • Jung, Jongwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.10
    • /
    • pp.21-26
    • /
    • 2018
  • Soil-water characteristic curve, which is called soil retention curve, is required to explore water flows in unsaturated soils, relative permeability of water in multi-phase fluids flow, and change to stiffness and volume of soils. Thus, the understanding of soil-water characteristic curves of soils help us explore the behavior of soils inclduing fluids. Biopolymers are environmental-friendly materials, which can be completely degraded by microbes and have been believed not to affect the nature. Thus, various biopolymers such as deacetylated power, polyethylene oxide, xanthan gum, alginic acid sodium salt, and polyacrylic acid have been studies for the application to soil remediation, soil improvement, and enhanced oil recovery. PAA (polyacrylic acid) is one of biopolymers, which have shown a great effect in enhanced oil recovery as well as soil remediation because of the improvement of water-flood performance by mobility control. The study on soil-water characteristic curves of sandy soils containing PAA (polyacrylic acid) has been conducted through experimentations and theoretical models. The results show that both capillary entry pressure and residual water saturation dramatically increase according to the increased concentration of PAA (polyacrylic acid). Also, soil-water characteristic curves by theoretical models are quite well consistent with the results by experimental studies. Thus, soil-water characteristic curves of sandy soils containing biopolymers such as PAA (polyacrylic acid) can be estimated using fitting parameters for the theoretical model.