• Title/Summary/Keyword: relative hydraulic conductivity

Search Result 37, Processing Time 0.021 seconds

Analysis of Relationship between 2-D Fabric Tensor Parameters and Hydraulic Properties of Fractured Rock Mass (절리성 암반의 이차원 균열텐서 파라미터와 수리적 특성 간의 상관성 분석에 관한 연구)

  • Um, Jeong-Gi;Han, Jisu
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.100-108
    • /
    • 2017
  • As a measure of the combined effect of fracture geometry, the fabric tensor parameters could quantify the status of the connected fluid flow paths in discrete fracture network (DFN). The correlation analysis between fabric tensor parameters and hydraulic properties of the 2-D DFN was performed in this study. It is found that there exists a strong nonlinear relationship between the directional conductivity and the fabric tensor component estimated in the direction normal to the direction of hydraulic conductivity. The circular radial plots without significant variation of the first invariant ($F_0$) of fabric tensor for different sized 2-D DFN block are a necessary condition for treating representative element volume (REV) of a fractured rock mass. The relative error (ER) between the numerically calculated directional hydraulic conductivity and the theoretical directional hydraulic conductivity decreases with the increase in $F_0$. A strong functional relation seems to exist between the $F_0$ and the average block hydraulic conductivity.

A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger (수직형 지중열교환기 열전도도 측정기술에 관한 연구)

  • Kim, Ji-Young;Lee, Euy-Joon;Chang, Ki-Chang;Kang, Eun-Chul
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.39-44
    • /
    • 2008
  • The heat exchange between the Borehole Heat Exchanger(BHE) and the surrounding ground depends directly on ground thermal conductivity k at the certain site. The k is thus a key parameter in designing BHE and coupled geothermal heat pump systems. Currently, although a thermal hydraulic response test(TRT) is mostly used in practice, the thermal hydraulic TRT needs additional power and is generally time-consuming. A new, simple wireless P/T probe for a hi-speed k determination was introduced in this paper. This technique using a wireless P/T probe is less time-consuming and requires no external source of energy for measurement and predicts local thermal properties by measuring soil temperatures along the depth. Measured temperature data along the depth was analyzed. In order to verify the new technique for the determination of ground thermal conductivity, ground thermal conductivity k that calculated from the measured temperature data using a wireless P/T probe was compared with one obtained from conventional hydraulic TRT. When comparing the average k of two methods, the relative error was approximately 10%. As a result, the electronic TRT can replace the conventional hydraulic TRT method after carrying out the additional research on a lot of sites.

  • PDF

Modeling of Remediation Design in Theoretically Heterogeneous Domain

  • Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.302-306
    • /
    • 2004
  • Probabilistic approaches are applied to the problem of groundwater remediation design to consider the risk of design and heterogeneity of real condition. Hydraulic conductivity fields are generated by two methods. First, the homogeneous domains which have the hydraulic conductivity with log-normal distribution are constructed by using Latin Hypercube method. Second, random fields with a certain spatial correlation are also generated. The optimal solutions represented by cumulative distribution function (CDF) of relative cost are calculated by three different manners. The one uses the homogeneous domains with the optimal design of base condition. It shows that ver)'wide range of cost and the influences of different penalty values. The other one uses the random field with same design and shows narrow range of cost. These CDF can reflect on the risk of optimal solution in a simple exampie condition and be effective in estimating the cost of groundwater remediation.

  • PDF

Sensitivity Analysis of the Groundwater Flow Model Parameters in a Small Rural Watershed (농촌 소유역에서 지하수 유동 모형의 매개변수 민감도 분석)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.8
    • /
    • pp.687-693
    • /
    • 2004
  • The MODFLOW simulated results with varying input parameter values were compared and analyzed. To understand the relative importance of the input parameters, sensitivity analysis was carried out. The amount of sustainable yield was analyzed with respect to the hydraulic conductivity, specific yield, specific storage, aquifer thickness and the distance of the wells from the river. The results of sensitivity analysis showed that inflow from the river and the aquifer storage were sensitive to the specific yield and aquifer thickness. Sustainable yield was sensitive to the hydraulic conductivity and aquifer thickness. The results of this study can be used as a basic information for groundwater development and management plannings considering regional characteristics.

Effects of Soil Bulk Density on Saturated Hydraulic Conductivity and Solute Elution Patterns (토양의 용적밀도에 따른 포화수리전도도 및 음이온의 용출양상)

  • Kim, Pil-Joo;Lee, Do-Kyoung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.234-241
    • /
    • 1997
  • The effects of bulk densities(${\rho}_b$) on saturated hydraulic conductivity (Ksat) and solute elution patterns were investigated from five different bulk densities ranging from $1.1Mg/m^3$ to $1.5Mg/m^3$ with each increment of $0.1Mg/m^3$. The hydraulic conductivities observed were divided into two stages: (1) a linearly decrease with increase in bulk density up to $1.4Mg/m^3$, (2) a steady state where the bulk density is greater than $1.4Mg/m^3$. Using the saturated hydraulic conductivity at the steady state, we figured out the equation describing the correlation between bulk densities(${\rho}_b$) and saturated hydraulic conductivity(Ksat) as follows: $Ksat=-19.2({\rho}_b{^2})+6{\rho}_b+15.5$, (r=0.985). Electrical conductivity(EC) measured from the leachate of the soil column showed that EC at the same pore volume were decreased with an increase in the bulk density from $1.2g/cm^3$, $1.5g/cm^3$, as shown in the time taken to collect the same pore volume at each respective bulk density. The maximum relative concentrations (C/Co=1) from the breakthrough curves for the anions of $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$, which are weakly adsorbed on the soil particles, moved to the right of the graph, while a distinctive retardation occurs at the bulk density between $1.3Mg/m^3$ and $1.4Mg/m^3$. The time taken to recover about 90% of indigenous sulphate was approximately twice as those of chloride and nitrate, resulting in slightly stronger adsorption characteristics for sorption sites on the soil surface. Thus, we can conclude that the salt accumulation in green house soil might be significantly influenced by it's bulk density at the soil depth, as well as the adsorption capacity of ions for the sorption sites in soils.

  • PDF

Effect of Groundwater Flow on Ice-wall Integrity (얼음벽 형성에 대한 지하수 흐름의 영향)

  • Shin, Hosung;Kim, Jinwook;Lee, Jangguen
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.43-55
    • /
    • 2018
  • AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.

Soil Water Diffusivity and Soil Water Stress Coefficient Studies Using Weighting Lysimeter Data (토양수분확산계수 측정과 자동측정리이시메타를 이용한 토양수분계수 추정)

  • Oh, Dong-Shig;Ayars, James E.;Soppe, Richard;Eom, Ki-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.344-356
    • /
    • 1999
  • A new and relatively simple equation for the soil water content-pressure head curve, ${\theta}$(h) is described in this paper. The particular form of the equation enables one to derive closed-form analytical expressions for the relative hydraulic conductivity, Kr, when substituted in the predictive conductivity models of Y. Mualem. Hopmans' equation is presented as an experimental method. The experienced method, $ET_a=K_sK_cET_o$ is introduced to estimate the actual evapotranspiration, $ET_a$(or $ET_c$). Using $ET_c$ and coil water data measured automatically in a weighing lusimeter, $K_s$ and $K_c$ values are estimated. Recently, FAO has introduced calculation procedures for the soil water(stress) coefficient, Ks in "Guidelines for computing crop water requirements".

  • PDF

Evaluating Effect of Density Flow from Upstream on Vertical Distribution of Water Quality at the Paldang Reservoir (팔당호 수질의 연직분포에 대한 밀도류 영향 평가)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • Paldang is a river reservoir in the Midwest of Korea, which is a drinking water source for the metropolitan area. Since the Paldang Reservoir is shallow, and has a short hydraulic residence time, its water quality is directly impacted by two incoming rivers, the north Han River (NHR) and the south Han River (SHR). The NHR has different seasonal patterns of water temperature from the SHR because the NHR is greatly impacted by the discharge water from upstream dams. The electrical conductivity (EC) and other material concentrations of the SHR are usually higher than those of the NHR because its basin is limestone-based. The difference in water temperature in the two rivers causes density flow, and the distribution of the EC within the reservoir can be an indicator for monitoring density flow. From the vertical gradient of the EC at the dam site, from spring to fall, it was confirmed that the SHR flowed into the upper layer, and the NHR flowed into the lower layer, and vice versa at other times. The relative difference (RD) of the EC between the upper layer and the lower layer at the dam site was used as an indicator for density flow. The RD of the EC showed a very significant correlation with the RD of total organic carbon (r = 0.70, p < 0.001) and the RD of total nitrogen (r = 0.58, p < 0.01). This relationship is based on the assumption that the difference in electrical conductivity and water quality between the SHR and the NHR is constant. However, in many cases this assumption is inconsistent. Thus, further study is needed on more suitable indicators to evaluate the impact of density flow on water quality.

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Relative Contribution rate on Soil Physico-chemical Properties Related to Fruit Quality of 'Hongro' Apple (사과 '홍로' 품종의 과실 품질에 미치는 토양이화학성의 상대적 기여도)

  • Kim, Seung-Heui;Park, Seo-Jun;Han, Jeom-Wha;Cho, Jung-Gun;Choi, Hyeong-Suk;Lim, Tae-Jun;Yun, Hea-Keun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.102-107
    • /
    • 2012
  • This study was carried out to investigate the optimum soil environmental conditions of ten contents on production of high quality fruit in 'Hongro' apple. The soil and fruit characteristics were analyzed at total 60 orchards in major apple producing areas such as Chungju, Moonkyeung, Yeongju, Andong, Yeosan and Yeongcheon (10 orchards an area). The soil environmental factors affected fruit weight were the highest relative contribution in saturated hydraulic conductivity of 33.3%. The cation was 24.6%, the bulk density, soil texture and solid phase were also high as relative contribution. The fruit weight was influenced by soil physical properties more than soil chemical properties. The soil environmental factors affected sugar content were highest soil texture of 21.9%, and the CEC and bulk density were low as relative contribution. The fruit coloring was the highest relative contribution in phosphate of 55.9%. While saturated hydraulic conductivity and organic matter content were low. The coloring was influenced by soil chemical properties more than soil physical properties. Fruit coloring was high influenced over 70% by soil physical properties. Finally, relative contribution on fruit quality related with sugar content, fruit weight, and coloring were high influenced by cultivation layer depth of 25.8%, soil texture 22.2%, and soil pH of 21.0% but bulk density and solid phase were low relative contribution. The fruit growth and soil chemical properties in 'Hongro' apple were very closely related. Therefore, orchard soil management to produce high quality fruit was very importance drainage management and organic matter application. We concluded that scientific soil management is possible by quanlifiable of soil management factors.