Browse > Article
http://dx.doi.org/10.7843/kgs.2018.34.11.43

Effect of Groundwater Flow on Ice-wall Integrity  

Shin, Hosung (Dept. of Civil & Environmental Engrg., Univ. of Ulsan)
Kim, Jinwook (Dept. of Civil & Environmental Engrg., Univ. of Ulsan)
Lee, Jangguen (Research Fellow, KICT)
Publication Information
Journal of the Korean Geotechnical Society / v.34, no.11, 2018 , pp. 43-55 More about this Journal
Abstract
AGF (Artificial Ground Freezing) method is a temporary ground improvement method which can apply to all types of soil with the purpose of high stiffness and low hydraulic conductivity. However, the groundwater flow and the heterogeneity of the ground increase the uncertainty of the ice-column formation which hinders the reliability of this method. The effects of groundwater flow and layered heterogeneity on ice-wall integrity by AGF method were analyzed using finite element analysis program for a coupled thermo-hydro phenomena in the freezing ground. Groundwater flow changes circular ice-column into elliptical shapes and increases the time required for the formation of ice walls. The previous theoretical formula overestimated the completion time of the ice wall and the critical groundwater velocity by neglecting the thermal interaction between adjacent ice-columns. Numerical results presented the corrected formula and verified the proposed equation for the dimensionless ice-wall completion time. In the layered heterogeneous ground, the thickness of the layer with higher hydraulic conductivity and its relative magnitude were found to be important factors in the ice-wall completion time and critical velocity.
Keywords
Artificial Ground Freezing method; Ice-wall integrity; FEM;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Andersland, O.B. and Ladanyi, B. (2004), Frozen ground engineering, John Wiley and Sons.
2 Fredlund, D.G. and Xing, A. (1994), "Equations for the Soil-water Characteristic Curve", Can. Geotech. J., 31, pp.521-532.   DOI
3 Hansson, K., Simunek, J. Mizoguchi, M., Lundin, L.C., and van Genuchten, M.T (2004), "Water Flow and Heat Transport in Frozen Soil: Numerical Solution and Freeze-thaw Applications", Vadose Zone Journal, 3, pp.693-704.
4 Hashemi, H.T. and Sliepcevich, C.M. (1973), "Effect of Seepage Stream on. Artificial Soil Freezing", Int. J. of Solid Mech. and Found. Div., 99, SM3, pp.267-289.
5 Hiller, P. (2007), Bodenvereisungsmassnahmen im heterogenen Untergrund unter Berucksichtigung einer Grundwasserstromung,, Bachelor Arbeit Untertagebau
6 Konrad, J.M. and Morgenstern, N.R. (1981), "The Segregation Potential of a Freezing Soil", Can. Geotech. J., 18, pp.482-491.   DOI
7 Hoekstra, P. (1966), "Moisture Movement in Soils under Temperature Gradients with the Cold-side Temperature below Freezing", Water Resour. Res., 2(2), pp.241-250.   DOI
8 Hu, R. and Liu, Q. (2016), "Simulation of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow", 2016 COMSOL conference in Munich.
9 Jessberger, H.L. (1996), Bodenvereisung, in Grundbau Taschenbuch Teil 2, 5. Auage, Hrsg. Smoltczyk, U., Verlag Ernst & Sohn, Berlin.
10 Lackner, R., Amon, A., and Lagger, H. (2005), "Artificial Ground Freezing of Fully Saturated Soil: Thermal Problem", Journal of Engineering Mechanics, 131(2), pp.211-220.   DOI
11 Lee, H.G. (2016), Numerical analysis of mechanical behavior of cross passage tunnel by applying artificial ground freezing method, Ph.D Thesis, Korea University.
12 Liu, Z. and Yu, X. (2011), "Coupled Thermo-hydro-mechanical Model for Porous Materials under Frost Action: Theory and Implementation", Acta. Geotechnica., 6, pp.51-65.   DOI
13 Sanger, F.J. and Sayles, F.H. (1979), "Thermal and Rheological Computations for Artificially Frozen Ground Construction", Engng Geol. 13(1-4), pp.311-337.   DOI
14 Mageau, D.W. and Morgenstern, N.R. (1980), "Observations on Moisture Migration in Frozen Soils", Can. Geotech. J., 17(1), pp.54-60.   DOI
15 Marwan, A., Zhou, M.M., Zaki Abdelrehim, M., and Meschke, G. (2016), "Optimization of Artificial Ground Freezing in Tunneling in the Presence of Seepage Flow", Computers and Geotechnics, 75, pp112-125.   DOI
16 Pimentel, E., Sres, A., and Anagnostou, G. (2012), "Large-scale Laboratory Tests on Artificial Ground Freezing under Seepage-flow Conditions", Geotechnique, 62(3), pp.227-241.   DOI
17 Sres, A. (2009), Theoretische und experimentelle Untersuchungen zur kunstlichen Bodenvereisung im stromenden Grundwasser. PhD thesis, ETH Zurich, No. 18378 (in German).
18 Schuster, J.A. (1972), "Controlled Freezing for Temporary Ground Support", Proc. 1st N. Am. Rapid Excavation and Tunneling Conf., Chicago 2, pp.333-347.
19 Shin, H. and Park, H. (2016), "Numerical Investigation of Freezing and Thawing Process in Buried Chilled Gas Pipeline", Journal of the Korean Geotechnical Society, 32(6), pp.17-26.   DOI
20 Shin, H. (2011), "Formulation of Fully Coupled THM behavior in Unsaturated Soil", Journal of Korean Geotechnical Society, 27(3), pp.75-83.   DOI
21 Victor, H. (1969), Die Frostausbreitung beim kunstlichen Gefrieren von Boden unter dem Einfluss stromenden Grundwassers. Veroffentlichungen des Institutes fur Bodenmechanik und Felsmechanik der TH Fridericiana in Karlsruhe, Vol.42 (in German).
22 Stander, W. (1967), Mathematische Ansatze zur Berechnung der Frostausbreitung in ruhendem Grundwasser im Vergleich zu Modelluntersuchungen fur verschiedene Gefrierrohranordnungen im Schacht- und Grundbau. Vero ffentlichungen des Institutes fur Bodenmechanik und Felsmechanik der TH Fridericiana in Karlsruhe, Vol.28 (in German).
23 Tan, X., Chen, W., Tian, H., and Cao, J. (2011), "Water Flow and Heat Transport Including Ice/water Phase Change in Porous Media: Numerical Simulation and Application", Cold Regions Sci. and Tec., 68, pp.74-84.   DOI
24 Thomas, H.R., Cleall, P., Li, Y.C., Harris, C., and Kern-Luetschg, M. (2009), "Modelling of Cryogenic Processes I Permafrost and Seasonally Frozen Soil", Geotechnique, 59(3), pp.173-184.   DOI
25 Vitel, M., Rouabhi, A., Tijani, M., and Guerin, F. (2016), "Modeling Heat and Mass Transfer during Ground Freezing Subjected to High Seepage Velocities", Computers and Geotechnics, 73, pp.1-15.   DOI