• Title/Summary/Keyword: relative error

Search Result 1,544, Processing Time 0.028 seconds

Highly Accurate Approximate Multiplier using Heterogeneous Inexact 4-2 Compressors for Error-resilient Applications

  • Lee, Jaewoo;Kim, HyunJin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.233-240
    • /
    • 2021
  • We propose a novel, highly accurate approximate multiplier using different types of inexact 4-2 compressors. The importance of low hardware costs leads us to develop approximate multiplication for error-resilient applications. Several rules are developed when selecting a topology for designing the proposed multiplier. Our highly accurate multiplier design considers the different error characteristics of adopted compressors, which achieves a good error distribution, including a low relative error of 0.02% in the 8-bit multiplication. Our analysis shows that the proposed multiplier significantly reduces power consumption and area by 45% and 26%, compared with the exact multiplier. Notably, a trade-off relationship between error characteristics and hardware costs can be achieved when considering those of existing highly accurate approximate multipliers. In the image blending, edge detection and image sharpening applications, the proposed 8-bit approximate multiplier shows better performance in terms of image quality metrics compared with other highly accurate approximate multipliers.

Compensation of the Straightness Measurement Error in the Laser Interferometer (레이저 간섭계의 진직도 측정오차 보상)

  • Khim Gyungho;Keem Tae-Ho;Lee Husang;Kim Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.69-76
    • /
    • 2005
  • The laser interferometer system such as HP5529A is one of the most powerful equipment fur measurement of the straightness error in precision stages. The straightness measurement system, HP5529A is composed of a Wollaston prism and a reflector. In this system, the straightness error is defined as relative lateral motion change between the prism and the reflector and computed from optical path difference of two polarized laser beams between these optics. However, rotating motion of the prism or the reflector used as a moving optic causes unwanted straightness error. In this paper, a compensation method is proposed for removing the unwanted straightness error generated by rotating the moving optic and an experiment is carried out for theoretical verification. The result shows that the unwanted straightness error becomes very large when the reflector is used as the moving optic and the distance between the reflector and the prism is far. Therefore, the prism must be generally used as the moving optic instead of the reflector so as to reduce the measurement error. Nevertheless, the measurement error must be compensated because it's not a negligible error if a rotating angle of the prism is large. In case the reflector must be used as the moving optic, which is unavoidable when the squareness error is measured between two axes, this compensation method can be applied and produces a better result.

The Influence of Different Quantitative Knowledge of Results on Performance Error During Lumbar Proprioceptive Sensation Training (양적 결과지식의 종류가 요추의 고유수용성감각 훈련에 미치는 영향)

  • Cynn, Won-Suk;Choi, Houng-Sik;Kim, Tack-Hoon;Roh, Jung-Suk;Yi, Jin-Bock
    • Physical Therapy Korea
    • /
    • v.11 no.3
    • /
    • pp.11-18
    • /
    • 2004
  • This study is aimed at investigating the influence of different quantitative knowledge of results on the measurement error during lumbar proprioceptive sensation training. Twenty-eight healthy adult men participated and subjects were randomly assigned into four different feedback groups(100% relative frequency with an angle feedback, 50% relative frequency with an angle feedback, 100% relative frequency with a length feedback, 50% relative frequency with a length feedback). An electrogoniometer was used to determine performance error in an angle, and the Schober test with measurement tape was used to determine performance error in a length. Each subject was asked to maintain an upright position with both eyes closed and both upper limbs stabilized on their pelvis. Lumbar vertebrae flexion was maintained at $30^{\circ}$ for three seconds. Different verbal knowledge of results was provided in four groups. After lumbar flexion was performed, knowledge of results was offered immediately. The resting period between the sessions per block was five seconds. Training consisted of 6 blocks, 10 sessions per one block, with a resting period of one minute. A resting period of five minutes was provided between 3 blocks and 4 blocks. A retention test was performed between 10 minutes and 24 hours later following the training block without providing knowledge of results. To determine the training effects, a two-way analysis of variance and a one-way analysis of variance were used with SPSS Ver. 10.0. A level of significance was set at .05. A significant block effect was shown for the acquisition phase (p<.05), and a significant feedback effect was shown in the immediate retention phase (p>.05). There was a significant feedback effect in the delayed retention phase (p<.05), and a significant block effect in the first acquisition phase and the last retention phase (p<.05). In conclusion, it is determined that a 50% relative frequency with a length feedback is the most efficient feedback among different feedback types.

  • PDF

Evaluation of Equations for Estimating Pan Evaporation Considering Regional Characteristics (지역특성을 고려한 pan 증발량 산정식 평가)

  • Rim, Chang-Soo;Yoon, Sei Eui;Song, Ju Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.47-62
    • /
    • 2009
  • The climate change caused by global warming may affect on the hydro-meteorologic factor such as evaporation (IPCC, 2001). Furthermore, it is also necessary that the effect of climate change according to geographical condition on evaporation should be studied. In this study, considering geographical and topographical conditions, the 6 evaporation equations that have been applied to simulate annual and monthly pan evaporation were compared. 56 climatologic stations were selected and classified, basing on the geographical and topographical characteristics (urbanization, topographical slope, proximity to coast, and area of water body). The evaporation equations currently being used are applied. These evaporation equations are Penman, Kohler-Nordenson-Fox (KNF), DeBruin-Keijman, Priestley-Taylor, Hargreaves, and Rohwer. Furthermore, Penman equation was modified by calibrating the parameters of wind function and was verified using relative error. The study results indicate that the KNF equation compared best with the pan: relative error was 8.72%. Penman equation provided the next-best values for evaporation relative to the pan: relative error was 8.75%. The mass-transfer method (Rohwer) provided the worst comparison showing relative error of 33.47%. In case that there is a close correlation between wind function and wind speed, modified Penman equation provided a better estimate of pan evaporation.

Energy Calibration of ESCA Spectrum for the Copper in the Interface of Copper and Cordierite (구리와 코디에라이트와의 접촉점에서 구리에 대한 ESCA 스펙트럼의 에너지 교정)

  • Han, Byoung-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.27-32
    • /
    • 1988
  • Electron Spectroscopy for Chemical Analysis(ESCA) allowes the determination of the elemental composition and the bonding state of the surface atomes in the interface between two materials. In the binding energies of ESCA spectrum, there are zero error, voltage scaling error and random error. Accurate analysis of the intensity energy response functions and accurate calibration of the energy scale are essential to use X-ray photoelectron spectron meter. At the results of the calibration of the ESCA spectra in the copper and cordierite (Mg2Al4Si5kO18) interfaces, the errors relative to the copper are -3.03 eV for the zero error -z,-197 ppm for the voltage scaling error -V and 6.9 meV for the random error -R. The method of the calibration is able to apply for the binding energy calibration of the another ESCA spectra.

  • PDF

Effect of Interval Size on Interpolation Estimates between Graduation Markers on CRT Display (CRT 표시장치에서 내삽 추정치에 대한 구간크기의 효과)

  • Ro, Jae-Ho
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.67-77
    • /
    • 1989
  • This study is concerned with the accuracy, the pattern of error with which subjects can interpolate the location of a pointer or a target between two graduation markers with various size on CRT display. Stimuli were graphic images on CRT with a linear, end-marked, ungraduated scales having a target for t base-line sizes. The location of a target is estimated in units over the range 1-99. Smallest error of estimates was at the near ends and middle of the base-line. The median error was less 2 units, modal error was 1, and most error(;99.6%) was within 10. Subjects had a more tendency to overestimate than to underestimate at the left-part of base-line in all siges, and an opposite tendency at the right-part. A proper size to minimize the interpolation error exists such that size 500. It is suggested that interpolation of fifths and even tenths will give a reguired accuracy for certain situations, and relative location and base-line size has a relevant attribute to interpolate.

  • PDF

Analyzing Characteristics of GPS Dual-frequency SPP Techniques by Introducing the L2C Signal

  • Seonghyeon Yun;Hungkyu Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.157-166
    • /
    • 2023
  • Several experiments were carried out to analyze the impact of the modernized Global Positioning System (GPS) L2C signal on pseudorange-based point positioning. Three dual-frequency positioning algorithms, ionosphere-free linear combination, ionospheric error estimation, and simple integration, were used, and the results were compared with those of Standard Point Positioning (SPP). An analysis was conducted to determine the characteristics of each dual-frequency positioning method, the impact of the magnitude of ionospheric error, and receiver grade. Ionosphere-free and ionospheric error estimation methods can provide improved positioning accuracy relative to SPP because they are able to significantly reduce the ionospheric error. However, this result was possible only when the ionospheric error reduction effect was greater than the disadvantage of these dual-frequency positioning algorithms such as the increment of multipath and noise, impact of uncertainty of unknown parameter estimation. The RMSE of the simple integration algorithm was larger than that of SPP, because of the remaining ionospheric error. Even though the receiver grade was different, similar results were observed.

A Study on the ACC Safety Evaluation Method Using Dual Cameras (듀얼카메라를 활용한 ACC 안전성 평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.57-69
    • /
    • 2022
  • Recently, as interest in self-driving cars has increased worldwide, research and development on the Advanced Driver Assist System is actively underway. Among them, the purpose of Adaptive Cruise Control (ACC) is to minimize the driver's driving fatigue through the control of the vehicle's longitudinal speed and relative distance. In this study, for the research of the ACC test in the real environment, the real-road test was conducted based on domestic-road test scenario proposed in preceding study, considering ISO 15622 test method. In this case, the distance measurement method using the dual camera was verified by comparing and analyzing the result of using the dual camera and the result of using the measurement equipment. As a result of the comparison, two results could be derived. First, the relative distance after stabilizing the ACC was compared. As a result of the comparison, it was found that the minimum error rate was 0.251% in the first test of scenario 8 and the maximum error rate was 4.202% in the third test of scenario 9. Second, the result of the same time was compared. As a result of the comparison, it was found that the minimum error rate was 0.000% in the second test of scenario 10 and the maximum error rate was 9.945% in the second test of scenario 1. However, the average error rate for all scenarios was within 3%. It was determined that the representative cause of the maximum error occurred in the dual camera installed in the test vehicle. There were problems such as shaking caused by road surface vibration and air resistance during driving, changes in ambient brightness, and the process of focusing the video. Accordingly, it was determined that the result of calculating the distance to the preceding vehicle in the image where the problem occurred was incorrect. In the development stage of ADAS such as ACC, it is judged that only dual cameras can reduce the cost burden according to the above derivation of test results.

Relative Power Density Distribution Calculations of the Kori Unit 1 Pressurized Water Reactor with Full-Scope Explicit Modeling of Monte Carlo Simulation

  • Kim, Jong-Oh;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.375-384
    • /
    • 1997
  • Relative power density distributions of the Kori Unit 1 pressurized water reactor are calculated by Monte Carlo modeling with the MCNP code. The Kori Unit 1 core is modeled on a three-dimensional representation of the one-eighth of the reactor in-vessel component with reflective boundaries at 0 and 45 degrees. The axial core model is based on half core symmetry and is divided into four axial segments. Fission reaction density in each rod is calculated by following 100 cycles with 5,000 test neutrons in each cycle after starling with a localized neutron source and ten noncontributing settle cycles. Relative assembly power distributions are calculated from fission reaction densities of rods in assembly. After 100 cycle calculations, the system converges to a k value of 1.00039 $\geq$ 0.00084. Relative assembly power distribution is nearly the same with that of the Kori Unit 1 FSAR. Applicability of the full-scope Monte Carlo simulation in the power distribution calculation is examined by the relative root moan square error of 2.159%.

  • PDF

Relative azimuth estimation algorithm using rotational displacement

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.188-194
    • /
    • 2014
  • Recently, indoor localization systems based on wireless sensor networks have received a great deal of attention because they help achieve high accuracy in position determination by using various algorithms. In order to minimize the error in the estimated azimuth that can occur owing to sensor drift and recursive calculation in these algorithms, we propose a novel relative azimuth estimation algorithm. The advantages of the proposed technique in an indoor environment are that an improved weight average filter is used to effectively reduce impulse noise from the raw data acquired from nodes with inherent errors and a rotational displacement algorithm is applied to obtain a precise relative azimuth without using additional sensors, which can be affected by electromagnetic noise. Results from simulations show that the proposed filter reduces the impulse noise, and the acquired estimation error does not accumulate with time by using proposed algorithm.