• 제목/요약/키워드: relative bounded motion

검색결과 5건 처리시간 0.022초

타원궤도의 위성편대비행을 위한 초기조건 결정 (DETERMINATION OF INITIAL CONDITIONS FOR SATELLITE FORMATION ELYING IN ELLIPTICAL ORBITS)

  • 이우경;유성문;박상영;최규홍;장영근
    • Journal of Astronomy and Space Sciences
    • /
    • 제22권1호
    • /
    • pp.21-34
    • /
    • 2005
  • 본 연구에서는 타원궤도상에서 위성의 편대비행을 유지하기 위하여 필요한 포기조건을 결정하고자 한다. 타원궤도일 경우 Hill 방정식으로는 위성간의 상대운동을 기술할 수 없기 때문에, Hill 방정식의 초기조건에 비선형성과 이심률에 대한 보정을 하여 얻은 새로운 운동방정식을 사용했다. 편대비행에서 상대적 거리를 유지하기 위하여 주위성과 부위성의 평균각속도를 일치시키는 구속조건을 이용했다. 이 구속조건은 J2 섭동항을 고려한 것이므로, 이 구속조건을 만족하는 편대비행의 초기조건은 타원궤도에서의 위성편대비행을 유지하는데 잘 적용될 수 있다. 타원궤도에서의 상대운동방정식 초기조건에 J2 섭동을 고려한 구속조건을 적용할 때, 이심률이 0.05 이하이고 위성간의 상대거리가 0.5km 정도인 경우만이 주기적으로 일정하게 간격이 유지되는 결과를 얻을 수 있다. 따라서 이심률이 크지 않은 타원궤도에서는 평균각속도 일치의 구속조건을 사용하여 위성간의 상대거리를 유지할 수 있었다. 이러한 결과를 이용하여 타원궤도에서의 위성편대비행을 위한 효율적인 초기조건을 제공할 수 있고, 위성편대비행의 운용에 있어서 비용을 절감할 수 있는 방법을 제시할 수 있다.

적응 슬라이딩 모드 축차 관측기를 이용한 직진 주행 차량 제어 (Longitudinal Motion Control of Vehicles Using Adaptive Sliding Mode Cascade Observer)

  • 김응석;김철진;이형찬
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method is used to estimate the vehicle parameters, mass, time constant, etc. The inter-vehicle spacing and its derivatives are estimated by using the sliding mode cascade observer introduced in this paper. It is shown that the proposed adaptive controller is uniformly ultimately bounded. It is also shown that the errors of the relative distance, the relative velocity and the relative acceleration asymptotically converge to zero. The simulation results are presented to investigate the effectiveness of the proposed method.

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.24-36
    • /
    • 2011
  • A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulation employs measurements obtained from a vision sensor to provide multiple line(-) of(-) sight vectors from the spacecraft to another spacecraft. The line-of-sight measurements are coupled with gyro measurements and dynamic models in an UKF to determine relative attitude, position and gyro biases. A vector of generalized Rodrigues parameters is used to represent the local error-quaternion between two spacecraft. A multiplicative quaternion-error approach is derived from the local error-quaternion, which guarantees the maintenance of quaternion unit constraint in the filter. The scenario for bounded relative motion is selected to verify this extended application of the UKF. Simulation results show that the UKF is more robust than the EKF under realistic initial attitude and navigation error conditions.

철근콘크리트 실험체의 시스템 식별과 유한요소모델수정 (Finite Element Model Updating and System Identification of Reinforced Concrete Specimen)

  • 김학진;유은종;김호근;이상현;조승호;정란
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.647-652
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centro(NS, 1942) ground motion histories with different Peak Ground Acceleration(PGA) ranging from 0.06g to 0.50g. For model updating, flexural stiffness values of structural members(walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions(i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of inputs for updating(i.e. transfer function and natural frequencies). The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters(i.e. flexural stiffness values).

  • PDF

철근콘크리트 실험체의 시스템 식별과 유한요소 모델 수정 (Finite Element Model Updating and System Identification of Reinforced Concrete Specimen)

  • 김학진;유은종;김호근;장극관;이상현;조승호;정란
    • 한국소음진동공학회논문집
    • /
    • 제18권7호
    • /
    • pp.725-731
    • /
    • 2008
  • This paper focused on the application of finite element model updating technique to evaluate the structural properties of the reinforced concrete specimen using the data collected from shaking table tests. The specimen was subjected to six El Centre (NS, 1942) ground motion histories with different peak ground acceleration (PGA) ranging from 0.06 g to 0.50 g. For model updating, flexural stiffness values of structural members (walls and slabs) were chosen as the updating parameters so that the converged results have direct physical interpretations. Initial values for finite element model were determined from the member dimensions and material properties. Frequency response functions (i.e. transfer functions), natural frequencies and mode shapes were obtained using the acceleration measurement at each floor and given ground acceleration history. The weighting factors were used to account for the relative confidence in different types of Inputs for updating (j.e. transfer function and natural frequencies) The constraints based on upper/lower bound of parameters and sensitivity-based constraints were implemented to the updating procedure in this study using standard bounded variable least-squares(BVLS) method. The veracity of the updated finite element model was investigated by comparing the predicted and measured responses. The results indicated that the updated model replicates the dynamic behavior of the specimens reasonably well. At each stage of shaking, severity of damage that results from cracking of the reinforced concrete member was quantified from the updated parameters (i.e. flexural stiffness values).