• Title/Summary/Keyword: related genes

Search Result 3,193, Processing Time 0.032 seconds

Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes (C2C12 근관세포에서 상엽에 의한 AMPK의 불활성화와 AICAR로 유도된 근위축 억제의 연관성에 관한 연구)

  • Lee, Yu Sung;Kim, Hong Jae;Jeong, Jin-Woo;Han, Min-Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.435-443
    • /
    • 2018
  • AMP-activated protein kinase (AMPK) functions as a metabolic master through regulating and restoring cellular energy balance. In skeletal muscle, AMPK increases myofibril protein degradation through the expression of muscle-specific ubiquitin ligases. Mori Folium, the leaf of Morus alba, is a traditional medicinal herb with various pharmacological functions; however, the effects associated with muscle atrophy have not been fully identified. In this study, we confirmed the effects of AMPK activation by examining the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, on the induction of atrophy and expression of atrophy-related genes in C2C12 myotubes. We also investigated the effects of the ethanol extract of Mori Folium (EEMF) on the recovery of AICAR-induced muscle atrophy in C2C12 myotubes. It was found that exposure to AICAR resulted in the stimulation of Forkhead box O3a (FOXO3a); an up-regulation of muscle-specific ubiquitin ligases such as Muscle Atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and a down-regulation of muscle-specific transcription factors, such as MyoD and myogenin; with the activation of AMPK. In addition, AICAR without cytotoxicity indicated a decrease in diameter of C2C12 myotubes. However, treatment with EEMF significantly suppressed AICAR-induced muscle atrophy of C2C12 myotubes in a dose-dependent manner as confirmed by a decrease in myotube diameter, which is associated with a reversed stimulation of FOXO3a by the inhibition of AMPK activation. These results indicate that the activation of AMPK by AICAR induces muscle atrophy, and EEMF has preeminent effects on the inhibition of AICAR-induced muscle atrophy through the AMPK signaling pathway.

The First Report on the Acanthocephalan Infection of the Dybowskii's Brown Frogs (Rana dybowskii) Collected Inside and Outside the Commercial Frog Farms in Korea (국내 개구리 양식장 내·외에서 채집된 북방산개구리(Rana dybowskii)의 구두충 감염 최초보고)

  • Kim, Jong-Sun;Koo, Kyo-Soung;Park, Jae-Jin;Kwon, Sera;Choia, Woo-Jin;Cho, Han-Na;Park, Daesik
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.694-704
    • /
    • 2016
  • Various infectious and parasitic diseases are known to be the main factors that cause decline in the global amphibian population. In Korea, commercial frog farms have been running since 2005. However, until now, studies on diseases including studies on parasitic diseases that occur in farm frogs have not been conducted. In this study, we studied and compared the acanthocephalan infection rates and the number of parasites in the body cavity, stomach, and small and large intestines of the Dybowskii's brown frogs collected from inside and outside the frog farms in Inje, Goesan, Gongju and Boryeong. In addition, we classified the acanthocephalan parasites into genera by analyzing their nuclear 18S rRNA genes. On an average, 51.7% of the investigated frogs were infected by acanthocephalans, which belong to the Centrorhynchus genus. The infection rate of the frogs collected in the Inje farm was 15%, significantly lower than those from the Goesan, Gongju and Boryeong farms. The rate in Goesan was 55%, which is lower than Gongju (80%) and Boryeong (90%) although it is not statistically significant. No difference was found in the infection rate and in the number of parasites in male and female frogs and between the groups collected from inside and outside of the farms. The number of infected parasites negatively correlated with the body condition of the frogs. The most parasites were found in the stomach followed by the small and large intestines and the body cavity. This study is the first report on the Centrorhynchus acanthocephalan infection of amphibians in Korea and it suggests the necessity for acanthocephalan parasite management and for conducting further disease-related studies in commercial frog farms.

qVDT11, a major QTL related to stable tiller formation of rice under drought stress conditions

  • Kim, Tae-Heon;Cho, Soo-Min;Han, Sang-Ik;Cho, Jun-Hyun;Kim, Kyung-Min;Lee, Jong-Hee;Song, You-Chun;Park, Dong-Soo;Oh, Myung-Gyu;Shin, Dongjin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.91-91
    • /
    • 2017
  • Drought is the most serious abiotic stress limiting rice production. However, little progress has been made in the genetic analysis of drought tolerance, because it is a complex trait controlled by a number of genes and affected by various environmental factors. In here, we screened 218 rice genetic resources for drought tolerance at vegetative stage and selected 32 highly drought tolerant varieties in greenhouse. Under rain-fed conditions, Grain yield of Nagdong was decreased by 53.3% from 517 kg/10a to 241 kg/10a when compare to irrigation condition. By comparison, grain yield of Samgang was decreased by 23.6% from 550 kg/10a to 420 kg/10a. The variety Samgang exhibited strong drought tolerance and stable yield in rain-fed conditions and was selected for further study. To identify QTLs for drought tolerance, we examined visual drought tolerance (VDT) and relative water content (RWC) using a doubled haploid (DH) population consisted of 101 lines derived from a cross between Samgang (a drought tolerance variety) and Nagdong (a drought sensitive variety). Three QTLs for VDT were located on chromosomes 2, 6, and 11, respectively, and explained 41.8% of the total phenotypic variance. qVDT2, flanked by markers RM324 and S2016, explained 8.8% of the phenotypic variance with LOD score of 3.3 and an additive effect of -0.6. qVDT6 was flanked by S6022 and S6023 and explained 12.7% of the phenotypic variance with LOD score of 5.0 and an additive effect of -0.7. qVDT11, flanked by markers RM26765 and RM287, explained 19.9% of the phenotypic variance with LOD score of 7.1 and an additive effect of -1.0. qRWC11 was the only QTL for RWC to be identified; it was in the same locus as qVDT11. qRWC11 explained 19.6% of the phenotypic variance, with a LOD score of 4.0 and an additive effect of 9.7. To determine QTL effects on drought tolerance in rain-fed paddy conditions, seven DH lines were selected according to the number of QTLs they contained. Of the drought tolerance associated QTLs, qVDT2 and qVDT6 did not affect tiller formation, but qVDT11increased tiller number. Tiller formation was most stable when qVDT2 and qVDT11 were combined. DH lines with both of these drought tolerance associated QTLs exhibited the most stable tiller formation. These results suggest that qVDT11 is important for drought tolerance and stable tiller formation under drought stress condition in field.

  • PDF

Evaluation of in vitro and in vivo bacteriophage efficacy against Salmonella enterica serovar Enteritidis infection (Bacteriophage의 Salmonella enterica serovar Enteritidis에 대한 in vitro 및 in vivo 효능 평가)

  • Cha, Seung-Bin;Rayamajhi, Nabin;Lee, Won-Jung;Shin, Min-Kyoung;Roh, Yu-Mi;Jung, Myung-Hwan;Myoung, Kil-Sun;Ahn, Young-Tae;Huh, Chul-Sung;Yoo, Han Sang
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.3
    • /
    • pp.213-220
    • /
    • 2010
  • Salmonella (S.) Enterica infection ranks among the most common food borne bacterial infections worldwide. Although there are six subspecies of S. Enterica, the vast majority of human and animal infections are caused by strains belonging to subspecies 1 serovar Typhimurium and Enteritidis. Recent reports on antibiotic resistance of Salmonella spp. are rising steadily. The increasing problem of antibiotic resistance has rekindled interest in bacteriophage to therapy. Therefore, we investigated the efficacy of bacteriophage in S. enterica serovar Enteritidis infected mice and pigs by measuring of body condition, body weight, bacterial colonization and weight of organs based on the in vitro analysis. In vitro experiment, phage cultured with S. Enteritidis showed clear lysis pattern, the plaque forming unit (PFU) of our phage culture was $1.5{\times}10^{11}PFU/mL$, and phage showed its maximum activity at 4 h post inoculation. In mouse experiment, there was no significant difference among experimental groups in the general body conditions and body weight of mice. However, there was difference in weight of liver and spleen depending on the experimental group (p < 0.05). The weight of liver and spleen were reduced by the phage treatment. Also bacterial colonization in spleen and liver were significantly reduced by the phage treatment. In pig experiment, the general body conditions and body temperature exhibited not much difference among the pigs except few pigs in group 3 which showed poor body conditions. From the feces in each group, we could isolate the S. Enteritidis only from group 3. Bacterial enrichment culture was necessary for isolating the bacteria from 5 dpi and 10 dpi, however direct isolation was possible from 15 dpi feces. In phage treated group, postmortem lesion was better than non-phage treated group. Recently, antibiotic resistance concerns on the food-borne bacterial pathogens have been increasing because of the wide spread of the antibiotics resistance genes. This concern is widely transmitted to the human related public health. As one of the alternative treatments on the bacterial pathogens, attempt using phages have been made to control the bacterial diseases. The positive possibility of the trail using phage was observed to control the S. enterica serovar Enteritidis in this study even though the further analysis has been remained.

THE EFFECT OF ALTERED FUNCTIONAL FORCE ON THE EXPRESSION OF SPECIFIC MRNAS IN THE DEVELOPING MOUSE MANDIBLE (하악골의 발육중인 생쥐에서 기능력의 변화가 특이-유전자 발현에 미치는 영향)

  • Kim, Hyung-Tae;Park, Joo-Cheol;Lee, Chang-Seop;Park, Heon-Dong
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.308-319
    • /
    • 2003
  • Mechanical forces are known to have an effect on bone formation, maintenance and remodeling, and there is evidence that the development of the mandibular condyle in the rat or mouse is influenced by altered functional force. However, studies are lacking in molecular-biologic mechanism such as the identification of differentiation factor induced from functional force. Here a mouse model was used to investigate the functional stress-responsive gene or factors which is related to the altered force by comparing the expression genes of functional state and hypo-functional state of the mouse mandible. ICR mice were provisioned with either a soft, mushy diet (soft-diet group) or hard rat pellets (hard-diet group) beginning at weaning for the alteration of functional force and subsequently sacrificed at 89 days of age. Incisor of mice in group 1 were trimmed twice a week to reduce occlusal forces. After killing the animals, mandibular bone including condyle were collected for RNA extraction, subtractive hybridization, northern blot analysis and mRNA in-situ hybridization. The results as follows; 1. A total of 39 clones were sequenced, and 11 individual sequence types were subsequently identified by subtractive hybridization, as 28 clones were represented twice in the analyzed sets. 2. Consequently four candidate clones, FS-s (functional stress-specific)2, -5, -18, and -22 were identified and characterized by homolgy search and northern analysis. Four of these clones, FS-s2, -5, -18, and -22, were shown to be expressed differentially in the hard-diet group. 3. Histologic sections showed that osteoblastic activity along the bone trabeculae and active bone remodeling were significantly lower in soft than in hard diet animals. A soft diet seems to enable a longer period of endochondral ossification in the mandibular condyle. 4. Although the mRNAs of FS-s2, -5, -18, and -22 were expressed rarely by cells of the soft-diet group, highest expression was detected in the cells of the hard-diet group. Together with the above results, it is suggested that FS-s2, -5, -18, and -22 could act as an important factors controlling the tissue changes in response to functional stress. The exact functional significance of these findings remains to be established.

  • PDF

Fruiting body development and genetic analysis of somatic hybrids by protoplast fusion in edible fungi (식용버섯의 원형질체 융합체의 자실체 발생 및 유전분석)

  • Yoo, Young Bok;Kong, Won Sik;Oh, Se Jong;Jhune, Chang Sung;Shin, Pyung Gyun;Kim, Beom Gi;Kim, Gyu Hyun;Park, Minsun;Min, Byung Re
    • Journal of Mushroom
    • /
    • v.2 no.3
    • /
    • pp.115-126
    • /
    • 2004
  • Somatic hybrids of inter-compatible and inter-incompatible strains were obtained by protoplast fusion. The fusion products between compatible strains, Pleurotus ostreatus and P. florida, formed heterokaryons, while fusants between incompatible strains such as P. cornucopiae + P. florida, P. ostreatus + Ganoderma applanatum, P. florida + Ganoderma lucidum, and P. ostreatus + Flammulina velutipes formed synkaryons that retained genes from both parents. The heterokaryons showed the same level of basidioma development. In contrast, the synkaryons showed unique characteristics including clamp connection formation at mitosis, either partner basidioma development, and abnormal segregation and recombination compared with inter-compatible strains. Synkaryons can be classified into homokaryoyic and heterokaryotic type. A comparison of somatic hybrids with compatible and incompatible strains was made using random amplified polymorphic DNA (RAPD) analysis. The heterokaryons between compatible species showed the same level of variability and contained both parental RAPD bands. In contrast, most of the synkaryons between incompatible species showed similarity to those of either parental bands and non-parental RAPD bands. Synkaryons can be classified into microgenome insertion type and macrogenome insertion type. A tetrapolar mating system was found among monospore isolates in somatic hybrids and wild type P. ostreatus. Homokaryons from each somatic hybrid combination were paired with tester homokaryons of the initial wild type of P. ostreatus. The changed mating types were identified in progenies. The pattern of mating type switching in somatic hybrids depends on compatibility of fusion partner. There are several factors related to the mechanism of clamp connection formation and fruiting body development of synkaryons. Of these,the major factor may be associated with self-fertility and mating type switching such as homokaryotic fruiting of wild type P. ostreatus. This review will discuss these aspects.

  • PDF

Effects of Vitexin from Mung Bean on 3T3-L1 Adipocyte Differentiation and Regulation According to Adipocytokine Secretion (녹두의 Vitexin이 비만전구세포에서 세포분화 및 아디포사이토카인 분비능에 미치는 영향)

  • Wi, Hae-Ri;Choi, Mun-Ji;Choi, Se-Lim;Kim, Ae-Jung;Lee, Myoung-Sook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.8
    • /
    • pp.1079-1085
    • /
    • 2012
  • Obesity is an important issue worldwide as it may associated with increased prevalence of metabolic diseases. Mung bean is known as a functional food for decreasing the glycemic index and lipid profile of plasma. The purpose of this study was to investigate the anti-obesity effects of vitexin from mung bean on the regulation of adipocyte differentiation and adipocytokine secretion. When 3T3-L1 adipocytes were treated with vitexin from days 0 to 14 at various levels of 25, 50, 100, and $200{\mu}M$, there was no change in cell viability. Vitexin treatment at 50, 100, and $200{\mu}M$ decreased triacylglycerol levels in cells, but only $100{\mu}M$ vitexin induced lipolysis. At $200{\mu}M$ of vitexin, phosphorylation of p38 and ERK, which causes secretion of inflammatory adipocytokines, was depressed, whereas there was an increase in expression of $PPAR{\gamma}$, the key regulator of adipocyte differentiation. Phosphorylation of AMPK increased at $100{\mu}M$ vitexin. TNF-${\alpha}$ and aP2 mRNA expression increased at $25{\mu}M$ vitexin, whereas only TNF-${\alpha}$ mRNA expression increased at $200{\mu}M$ vitexin. Further, the mRNA levels of TNF-${\alpha}$ and aP2 decreased at other concentrations in a dose-dependent manner. Since we observed that mRNA expression of C/EBP, SREBP1, and $PPAR{\gamma}$ did not change upon vitexin treatment, our future studies will investigate other genes such as mTOR, which is related with apoptosis signaling, or SIRT1, which is associated with inhibition of adipogenesis. Our results indicate that vitexin at concentrations between 100 and $200{\mu}M$ is suitable in vivo for the development of mung bean as an anti-obesity therapy or functional food.

Effect of Stem Cell-Derived Conditioned Medium on the In Vitro Maturation and Embryonic Development of Parthenogenetic Embryos in Pigs (Stem Cell-Derived Conditioned Medium 첨가가 돼지난자의 체외성숙 및 단위발생란의 초기배 발육에 미치는 영향)

  • Kwon, Dae-Jin;Hwang, In-Sul;Kwak, Tae-Uk;Oh, Keon Bong;Ock, Sun-A;Chung, Hak-Jae;Im, Gi-Sun;Hwang, Seongsoo
    • Reproductive and Developmental Biology
    • /
    • v.39 no.3
    • /
    • pp.89-95
    • /
    • 2015
  • The addition of growth factors and cytokines to in vitro culture (IVC) media could affect embryo development and the quality of the resulting blastocysts. The present study was performed to investigate the effect of porcine induced pluripotent stem cell (piPSC)-culture conditioned medium (CM) on the in vitro maturation (IVM) and development of parthenogentic embryos (parthenotes) in pigs. Cumulus-oocyte complexes (COCs) or activated oocytes were cultured in IVM or IVC medium supplemented with 0 (control), 25, or 50% of stem cell medium (SM) or CM, respectively. The maturation rate of CM-25% group was significantly improved when compared with control group (p<0.05), but that was not different among SM or CM groups. Blastocyst formation rate was significantly higher in CM-25% group (29.2%) than that of control (20.7%), SM-50% (19.6%) and CM-50% (23.66%, p<0.05). Cell number and the apoptotic cell index in blastocysts was significantly lower in SM-25% than in CM-25% group (p<0.05). The embryo quality related genes, OCT4, KLF4, TERT and ZFP42, were significantly increased in CM-25% group compared with control (p<0.05). In conclusion, the addition of 25% of CM to IVM and IVC medium positively influences not only the developmental potential also quality of parthenotes in pig.

Alcohol Fermentation at High Temperature and the Strain-specific Characteristics Required to Endow the Thermotolerance of Sacchromyces cerevisiae KNU5377

  • Paik, Sang-Kyoo;Park, In-Su;Kim, Il-Sup;Kang, Kyung-Hee;Yu, Choon-Bal;Rhee, In-Koo;Jin, In-Gnyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.154-164
    • /
    • 2005
  • Saccharomyces cerevisiae KNU5377 is a thermotolerant strain, which can ferment ethanol from wasted papers and starch at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. This strain showed alcohol fermentation ability to convert wasted papers 200 g (w/v) to ethanol 8.4% (v/v) at 40$^{\circ}C$, meaning that 8.4% ethanol is acceptable enough to ferment in the industrial economy. As well, all kinds of starch that are using in the industry were converted into ethanol at 40$^{\circ}C$ with the almost same rate as at 30$^{\circ}C$. Hyperthermic cell killing kinetics and differential scanning calorimetry (DSC) revealed that exponentially growing cells of this yeast strain KNU5377 were more thermotolerant than those of S. cerevisiae ATCC24858 used as a control. This intrinsic thermotolernace did not result from the stability of entire cellular components but possibly from that of a particular target. Heat shock induced similar results in whole cell DSC profiles of both strains and the accumulation of trehalose in the cells of both strains, but the trehalose contents in the strain KNU5377 were 2.6 fold higher than that in the control strain. On the contrary to the trehalose level, the neutral trehalase activity in the KNU5377 cells was not changed after the heat shock. This result made a conclusion that though the trehalose may stabilize cellular components, the surplus of trehalose in KNU5377 strain was not essential for stabilization of whole cellular components. A constitutively thermotolerant yeast, S. cerevisiae KNU5377, was compared with a relatively thermosensitive control, S. cerevisiae ATCC24858, by assaying the fluidity and proton ATPase on the plasma membrane. Anisotropic values (r) of both strains were slightly increased by elevating the incubation temperatures from 25$^{\circ}C$ to 37$^{\circ}C$ when they were aerobically cultured for 12 hours in the YPD media, implying the membrane fluidity was decreased. While the temperature was elevated up to 40$^{\circ}C$, the fluidity was not changed in the KNU5377 cell, but rather increased in the control. This result implies that the plasma membrane of the KNU5377 cell can be characterized into the more stabilized state than control. Besides, heat shock decreased the fluidity in the control strain, but not in the KNU5377 strain. This means also there's a stabilization of the plasma membrane in the KNU5377 cell. Furthermore, the proton ATPase assay indicated the KNU5377 cell kept a relatively more stabilized glucose metabolism at high temperature than the control cell. Therefore, the results were concluded that the stabilization of plasma membrane and growth at high temperature for the KNU5377 cell. Genome wide transcription analysis showed that the heat shock responses were very complex and combinatory in the KNU5377 cell. Induced by the heat shock, a number of genes were related with the ubiquitin mediated proteolysis, metallothionein (prevent ROS production from copper), hsp27 (88-fold induced remarkably, preventing the protein aggregation and denaturation), oxidative stress response (to remove the hydrogen peroxide), and etc.

  • PDF

Microbial Community Composition Associated with Anaerobic Oxidation of Methane in Gas Hydrate-Bearing Sediments in the Ulleung Basin, East Sea (동해 울릉분지 가스 하이드레이트 매장 지역의 메탄산화 미생물 군집 조성 및 분포)

  • Cho, Hyeyoun;Kim, Sung-Han;Shin, Kyung-Hoon;Bahk, Jang-Jun;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.53-62
    • /
    • 2015
  • To elucidate the microbial consortia responsible for the anaerobic methane oxidation in the methane hydrate bearing sediments, we compared the geochemical constituents of the sediment, the rate of sulfate reduction, and microbial biomass and diversity using an analysis of functional genes associated with the anaerobic methane oxidation and sulfate reduction between chimney site (UBGH2-3) on the continental slope and non-chimney site (UBGH2-10) on the basin of the Ulleung Basin. From the vertical profiles of geochemical constituents, sulfate and methane transition zone (SMTZ) was clearly defined between 0.5 and 1.5 mbsf (meters below seafloor) in the UBGH2-3, and between 6 and 7 mbsf at the UBGH2-10. At the UBGH2-3, the sulfate reduction rate (SRR) in the SMTZ exhibited was appeared to be $1.82nmol\;cm^{-3}d^{-1}$ at the depth of 1.15 mbsf. The SRR in the UBHG2-10 showed a highest value ($4.29nmol\;cm^{-3}d^{-1}$) at the SMTZ. The 16S rRNA gene copy numbers of total Prokaryotes, mcrA, (methyl coenzyme M reductase subunit A), and dsrA (dissimilatory sulfite reductase subunit A) showed the peaks in the SMTZ at both sites, but the maximum mcrA gene copy number of the UBGH2-10 appeared below the SMTZ (9.8 mbsf). ANME-1 was a predominant ANME (Anaerobic MEthanotroph) group in both SMTZs of the UBGH2-3 and -10. However, The sequences of ANME-2 were detected only at 2.2 mbsf of the UBGH2-3 where high methane flux was observed because of massive amount of gas hydrate at shallow depth. And Desulfosarcina-Desulfococcus (DSS) that is associated with ANME-2 was detected in 2.2 mbsf of the UBHG2-3. Overall results demonstrate that ANME-1 and ANME-2 are considered as significant archaeal groups related to methane cycle in the subsurface sediment of the East Sea, and ANME-2/DSS consortia might be more responsible for methane oxidation in the methane seeping region than in non-seeping region.