Browse > Article
http://dx.doi.org/10.5352/JLS.2018.28.4.435

Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes  

Lee, Yu Sung (Department of Horticultural Biotechnology, College of Life Sciences, Kyunghee University)
Kim, Hong Jae (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
Jeong, Jin-Woo (Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources)
Han, Min-Ho (Team of Marine Bio-Resources, National Marine Biodiversity Institute of Korea)
Hong, Su Hyun (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
Choi, Yung Hyun (Open Laboratory for Muscular & Skeletal Disease Control and Department of Biochemistry, Dongeui University College of Korean Medicine)
Park, Cheol (Department of Molecular Biology, College of Natural Sciences, Dongeui University)
Publication Information
Journal of Life Science / v.28, no.4, 2018 , pp. 435-443 More about this Journal
Abstract
AMP-activated protein kinase (AMPK) functions as a metabolic master through regulating and restoring cellular energy balance. In skeletal muscle, AMPK increases myofibril protein degradation through the expression of muscle-specific ubiquitin ligases. Mori Folium, the leaf of Morus alba, is a traditional medicinal herb with various pharmacological functions; however, the effects associated with muscle atrophy have not been fully identified. In this study, we confirmed the effects of AMPK activation by examining the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMPK, on the induction of atrophy and expression of atrophy-related genes in C2C12 myotubes. We also investigated the effects of the ethanol extract of Mori Folium (EEMF) on the recovery of AICAR-induced muscle atrophy in C2C12 myotubes. It was found that exposure to AICAR resulted in the stimulation of Forkhead box O3a (FOXO3a); an up-regulation of muscle-specific ubiquitin ligases such as Muscle Atrophy F-box (MAFbx)/atrogin-1 and muscle RING finger-1 (MuRF1), and a down-regulation of muscle-specific transcription factors, such as MyoD and myogenin; with the activation of AMPK. In addition, AICAR without cytotoxicity indicated a decrease in diameter of C2C12 myotubes. However, treatment with EEMF significantly suppressed AICAR-induced muscle atrophy of C2C12 myotubes in a dose-dependent manner as confirmed by a decrease in myotube diameter, which is associated with a reversed stimulation of FOXO3a by the inhibition of AMPK activation. These results indicate that the activation of AMPK by AICAR induces muscle atrophy, and EEMF has preeminent effects on the inhibition of AICAR-induced muscle atrophy through the AMPK signaling pathway.
Keywords
AICAR; AMPK; atrophy; C2C12 myotubes; EEMF;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nakashima, K. and Yakabe, Y. 2007. AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes. Biosci. Biotechnol. Biochem. 71, 1650-1656.   DOI
2 Price, S. R. and Mitch, W. E. 1998. Mechanisms stimulating protein degradation to cause muscle atrophy. Curr. Opin. Clin. Nutr. Metab. Care 1, 79-83.   DOI
3 Price, S. R. 2003. Increased transcription of ubiquitin-proteasome system components: molecular responses associated with muscle atrophy. Int. J. Biochem. Cell. Biol. 35, 617-628.   DOI
4 Rutter, G. A., Da Silva Xavier, G. and Leclerc, I. 2003. Roles of 5'-AMP-activated protein kinase (AMPK) in mammalian glucose homoeostasis. Biochem. J. 375, 1-16.   DOI
5 Sanchez, A. M., Csibi, A., Raibon, A., Cornille, K., Gay, S., Bernardi, H. and Candau, R. 2012. AMPK promotes skeletal muscle autophagy through activation of forkhead FoxO3a and interaction with Ulk1. J. Cell. Biochem. 113, 695-710.   DOI
6 Tintignac, L. A., Lagirand, J., Batonnet, S., Sirri, V., Leibovitch, M. P. and Leibovitch, S. A. 2005. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J. Biol. Chem. 280, 2847-2856.   DOI
7 Tong, J. F., Yan, X., Zhu, M. J. and Du, M. 2009. AMP-activated protein kinase enhances the expression of muscle-specific ubiquitin ligases despite its activation of IGF-1/Akt signaling in C2C12 myotubes. J. Cell. Biochem. 108, 458-468.   DOI
8 Troncoso, R., Paredes, F., Parra, V., Gatica, D., Vasquez-Trincado, C., Quiroga, C., Bravo-Sagua, R., Lopez-Crisosto, C., Rodriguez, A. E., Oyarzun, A. P., Kroemer, G. and Lavandero, S. 2014. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle 13, 2281-2295.   DOI
9 Abe, S., Rhee, S., Iwanuma, O., Hiroki, E., Yanagisawa, N., Sakiyama, K. and Ide, Y. 2009. Effect of mechanical stretching on expressions of muscle specific transcription factors MyoD, Myf-5, myogenin and MRF4 in proliferated myoblasts. Anat. Histol. Embryol. 38, 305-310.   DOI
10 Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91, 181-187.   DOI
11 Attaix, D., Combaret, L., Béchet, D. and Taillandier, D. 2008. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr. Opin. Support. Palliat. Care 2, 262-266.   DOI
12 Bedard, N., Jammoul, S., Moore, T., Wykes, L., Hallauer, P. L., Hastings, K. E., Stretch, C., Baracos, V., Chevalier, S., Plourde, M., Coyne, E. and Wing, S. S. 2015. Inactivation of the ubiquitin-specific protease 19 deubiquitinating enzyme protects against muscle wasting. FASEB. J. 29, 3889-3898.   DOI
13 Cao, P. R., Kim, H. J. and Lecker, S. H. 2005. Ubiquitin-protein ligases in muscle wasting. Int. J. Biochem. Cell. Biol. 37, 2088-2097.   DOI
14 Chao, P. Y., Lin, K. H., Chiu, C. C., Yang, Y. Y., Huang, M. Y. and Yang, C. M. 2013. Inhibitive effects of mulberry leaf-related extracts on cell adhesion and inflammatory response in human aortic endothelial cells. Evid. Based Complement. Alternat. Med. 2013, 267217.
15 Huang, C. H., Tsai, S. J., Wang, Y. J., Pan, M. H., Kao, J. Y. and Way, T. D. 2009. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Mol. Nutr. Food Res. 53, 1156-1165.   DOI
16 Fogarty, S. and Hardie, D. G. 2010. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 1804, 581-591.   DOI
17 Foletta, V. C., White, L. J., Larsen, A. E., Léger, B. and Russell, A. P. 2011. The role and regulation of MAFbx/atrogin-1 and MuRF1 in skeletal muscle atrophy. Pflugers Arch. 461, 325-335.   DOI
18 Hardie, D. G. 2014. AMPK--sensing energy while talking to other signaling pathways. Cell Metab. 20, 939-952.   DOI
19 Huang, S. S., Yan, Y. H., Ko, C. H., Chen, K. M., Lee, S. C. and Liu, C. T. 2014. A Comparison of food-grade Folium mori (Sāng Yè) extract and 1-deoxynojirimycin for glycemic control and renal function in streptozotocin-induced diabetic rats. J. Tradit. Complement. Med. 4, 162-170.   DOI
20 Hyatt, J. P., Roy, R. R., Baldwin, K. M. and Edgerton, V. R. 2003. Nerve activity-independent regulation of skeletal muscle atrophy: role of MyoD and myogenin in satellite cells and myonuclei. Am. J. Physiol. Cell. Physiol. 285, C1161-1173.   DOI
21 Jackman, R. W. and Kandarian, S. C. 2004. The molecular basis of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 287, C834-843.   DOI
22 Jaitovich, A., Angulo, M., Lecuona, E., Dada, L. A., Welch, L. C., Cheng, Y., Gusarova, G., Ceco, E., Liu, C., Shigemura, M., Barreiro, E., Patterson, C., Nader, G. A. and Sznajder, J. I. 2015. High CO2 levels cause skeletal muscle atrophy via AMP-activated kinase (AMPK), FoxO3a protein, and muscle-specific Ring finger protein 1 (MuRF1). J. Biol. Chem. 290, 9183-9194.   DOI
23 Marcinko, K. and Steinberg, G. R. 2014. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise. Exp. Physiol. 99, 1581-1585.   DOI
24 Jeon, Y. S. and Kim, M. W. 2011. The antioxidative effects and isolation and characterization of the extracts from Morus alba L.. Kor. J. Food Nutr. 24, 94-100.   DOI
25 Jiang, L. D., Xuan, G. D., Zhao, L., Zhu, Y. F. and Lou, X. F. 2011. Study on determination and pharmacokinetics of metabolites from Folium Mori extract in rats. Zhejiang Da Xue Xue Bao Yi Xue Ban. 40, 395-401.
26 Kobayashi, Y., Miyazawa, M., Kamei, A., Abe, K. and Kojima, T. 2010. Ameliorative effects of mulberry (Morus alba L.) leaves on hyperlipidemia in rats fed a high-fat diet: induction of fatty acid oxidation, inhibition of lipogenesis, and suppression of oxidative stress. Biosci. Biotechnol. Biochem. 74, 2385-2395.   DOI
27 Lee, J., Chae, K., Ha, J., Park, B. Y., Lee, H. S., Jeong, S., Kim, M. Y. and Yoon, M. 2008. Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. J. Ethnopharmacol. 115, 263-270.   DOI
28 Lee, S. K, Lee, J. O., Kim, J. H., Kim, N., You, G. Y., Moon, J. W., Sha, J., Kim, S. J., Lee, Y. W., Kang, H. J., Park, S. H. and Kim, H. S. 2012. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated $PPAR{\alpha}$ induction in 3T3-L1 preadipocytes. Cell. Signal. 24, 2329-2336.   DOI
29 Miranda, N., Tovar, A. R., Palacios, B. and Torres, N. 2007. AMPK as a cellular energy sensor and its function in the organism. Rev. Invest. Clin. 59, 458-469.
30 Murton, AJ, Constantin, D, Greenhaff, PL. The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochim Biophys Acta. 1782, 730-743.