• Title/Summary/Keyword: reinforcing system

Search Result 542, Processing Time 0.03 seconds

An innovative system to increase the longitudinal shear capacity of composite slabs

  • Simoes, Rui;Pereira, Miguel
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.509-525
    • /
    • 2020
  • Steel-concrete composite slabs with profiled steel sheeting are widely used in the execution of floors in steel and composite buildings. The rapid construction process, the elimination of conventional replaceable shuttering and the reduction of temporary support are, in general, considered the main advantages of this structural system. In slabs with the spans currently used, the longitudinal shear resistance commonly provided by the embossments along the steel sheet tends to be the governing design mode. This paper presents an innovative reinforcing system that increases the longitudinal shear capacity of composite slabs. The system is constituted by a set of transversal reinforcing bars crossing longitudinal stiffeners executed along the upper flanges of the steel sheet profiles. This type of reinforcement takes advantage of the high bending resistance of the composite slabs and increases the slab's ductility. Two experimental programmes were carried out: a small-scale test programme - to study the resistance provided by the reinforcing system in detail - and a full-scale test programme to test simply supported and continuous composite slabs - to assess the efficacy of the proposed reinforcing system on the global behaviour of the slabs. Based on the results of the small-scale tests, an equation to predict the resistance provided by the proposed reinforcing system was established. The present study concludes that the resistance and the ductility of composite slabs using the reinforcing system proposed here are significantly increased.

Development of Support System in Preparing Placing Drawings for the Improvement of Efficiency of Reinforcing Steel Works

  • Hyeon-Yong Park;Tai-Kyoung Kang;Yoo-Sub Lee;Hun-Hee Cho;U-Yeol Park;Hyun-Oak Jung;Kyo-Sun Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1370-1376
    • /
    • 2009
  • Reinforcing steel works should be carefully controlled by the construction manager considering the severe fluctuation of the price of reinforcing steel bars and for the safety of structure in building constructions. In particular, preparing rebar placing drawings needs more effort and time than before because of the emergence of higher and more complicated buildings. Moreover, the experience of field engineers or foremen (fabricators or detailers) in preparing placing drawings gives rise to the differences in fabricated bar type and quantity of bars used. To address these problems, this study proposed the support system in preparing placing drawings for reinforcing steel works efficiency. In the near future, if this system can be made available on the web, multiple end-users will be able to share the result; the efficiency of rebar supply chain management will also be improved.

  • PDF

The Influence of Frequency on Wayside Transmitter of ATP System upon Reinforcing Bars in Concrete Slab Track (콘크리트 슬래브궤도에서 ATP시스템 지상자의 주파수가 철근에 미치는 영향)

  • Kim, Min-Seok;Lee, Jong-Woo;Ko, Jun-Seog
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.691-706
    • /
    • 2008
  • ATP(Automatic Train Protection) system in railway signaling system is the important one grasping the position and velocity of a train. The wayside transmitter of ATP system is installed between rails. In concrete slab track, the signal current using wayside transmitter of ATP system is influenced by reinforcing bars. The magnetic coupling between reinforcing bars and wayside transmitter of ATP system as a filter makes an input current distorted. So, it makes an alternating current signal with a desirable size not transmit to on-board system of a train. Way to decrease the distortion of an input current signal frequency is to avoid maximum induction current frequency. And the induction phenomenon between reinforcing bars insulated and wayside transmitter of ATP system does not occur. In this paper, we represent the model about wayside transmitter of ATP system and reinforcing bars on the concrete slab tracks, and calculated the parameters demanded for the model. Also, we demonstrated it through the Maxwell program. Furthermore, we calculated impedance on wayside transmitter used in KVB system and ERTMS/ETCS system which are a kind of ATP system, frequency response of induction current, using the Matlab, and demonstrated the validity of it, using the PSpice program.

  • PDF

The Application of Impressed Current System for the Corrosion Control of Reinforcing Steel in Concrete (콘크리트 중의 철근부식 방지를 위한 외부전원법의 적용)

  • 문한영;김성수;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.197-202
    • /
    • 1997
  • Recently the interest in the reinforcing steel corrosion due to the use of sea-sand and deicing salt, marine environment, and carbonation in RC structures is increasing, therefore the studies on the corrosion control of reinforcing steel in concrete are vigorously proceeding. In this study, from the viewpoint of electrochemical process of steel corrosion in concrete we applied the impressed current system among the cathodic protections to reinforcing steel in concrete and ascertained the protection effect by half-cell potential, corrosion rate, and depolarization.

  • PDF

Structural Performance of Steel Pipe Splice for SD500 High-strength Reinforcing Bar under Cyclic Loading

  • Kim, Hyong-Kee
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • It is the purpose of this study to evaluate the structural performance of steel pipe splice for SD500 high-strength reinforcing bar, through a cyclic loading test. The experimental variables adopted in this study include the development length of rebar, the type of sleeve, and size of reinforcing bar, among others. The results of this study showed that the developed steel pipe splice system for SD500 high-strength reinforcing bar, retained the structural performance required in domestic, ACI and AIJ code. It is considered that the study result presented in this paper can be helpful in developing a reasonable design method for a steel pipe splice system for SD500 high-strength reinforcing bar.

The Study on the Development of Automatic Rebar Placement System Applying Selection Method of Optimum Reinforcing Bar Group on Shear Wall (최적배근그룹 선정방법을 적용한 전단벽체의 자동배근 시스템 개발에 관한 연구)

  • Cho, Young-Sang;Kim, Dong-Eun;Jin, Hyun-Ah;Jang, Hyun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • This study takes shear wall of reinforced concrete structure as study object, and the purpose of this study is to suggest structure BIM based on automatic reinforcing bar placement system applying set-based design through the most optimum reinforcing bar placement group that was selected by applying AHP (analytical hierarchy process) method from design step. For this, the most optimum reinforcing bar placement group was selected by pairwise comparison analysis on complex standard of multiple alternatives. And shear wall automatic reinforcing bar placement system has been developed, which can automatically generate members and arrange reinforcing bar by structure design algorithm and using open API (application programming interface) provided by a BIM software vendor. As a result, the most optimum reinforcing bar placement group of the highest weight, ALT1, was selected and was generated using Tekla Structure program.

Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-performance Mortar (섬유복합재봉(FRP ROD)과 고강도 모르터를 이용한 철근 콘크리트 구조물의 휨 보강공법(MFRI) 공법)

  • Bae Ki-Sun;Park Sing-Hun;Lee Sang-Uk
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.59-65
    • /
    • 2005
  • This report is on the Reinforcing System(MFRI) for Concrete Structure using FRP ROD & High-Performance Mortar. The main characteristic of this system is as follow. First, the fiber rods in this system have seven times greater tensile strength than general reinforcing steel bars(re-bar) and the weight is a fifth lighter. Camels coated on the fiber rods' surfaces to improve adhesive strength and pull-out strength. Second, high strength shotcrete mortar is has very good workability and low rebound rate. After installing the Fiber Rods, Shotcrete mortar Is applied or sprayed to finish reinforcement. Finally, MFRI system has excellent fire-resisting performance and sogood tolerance against external environment by inserting fiber rods and reinforcing materials into mortar which has high compressive strength. It is applied to bridge slab, utility box and tunnel of civil engineering works, and beam and slab of building structures.

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

Structural Performance of High Strength Grout-Pilled Splice Sleeve System (고강도 모르타르 충전식 철근이음의 구조성능에 관한 실험연구)

  • 김형기;안병익;남재현;박복만
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.516-524
    • /
    • 2001
  • Among many connection methods of reinforcing bar, the grout-filled splice sleeve system is very effective method of precast concrete construction due to its superior construction efficiency, such as large allowable limit to arrangement of reinforcing bars, good application of large sized reinforcing bars. In this study, totally 20 full-sited specimens were made and tested under monotonic and cyclic loading in order to extend the usage range of grout-filled splice sleeve system. The experimental variables adopted in this study are size of reinforcing bars embedded in upper and lower part of sleeve and compressive strength of filled mortar etc. After test was performed, the results were compared and analyzed with respect to previous test of author. Following main conclusions are obtained : 1) The structural performance of splice sleeve system is improved with increasing compressive strength of filled mortar. And also it was verified that the splice sleeve system with over 700 kgf/㎠ mortar compressive strength and over 6.54 development length of reinforcing bar retains the structural performance of over A class(AIJ Criteria). 2) In the case of using different size of reinforcing bars embedded in upper and lower part of sleeve, the result show that splice sleeve matching with large sized reinforcing bar must be used. And also up to 2 level smaller size of reinforcing bar compared to large reinforcing bar embedded in sleeve can be used.

FRACTURE STRENGTH BETWEEN DIFFERENT CONNECTOR DESIGNS OF ZIRCONIA CORE FOR POSTERIOR FIXED PARTIAL DENTURES MANUFACTURED WITH CAD/CAM SYSTEM (CAD/CAM을 이용한 구치부 전부도재 고정성 국소의치 지르코니아 코어의 연결부 설계에 따른 파절강도)

  • Seo Jun-Yong;Park In-Nim;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Statements of problem: Zirconia core is used for posterior fixed partial dentures because it's good mechanical properties. Stress is concentrated on connectors in fixed partial dentures, so the proper design of connector areas is needed for adequate mechanical long-term properties of any prosthesis. The area of connector is critical, but tooth size and surrounding soft tissue limit the connector design. Purpose: The purpose of this study is to compare fracture strengths between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system and determining the optimal connector design satisfying strength and hygiene. Material and method: The following four groups of 40 posterior fixed partial denture specimens(each group 10) were fabricated as followed; group 1 vertical height of connector is 3mm (control group, all groups have the same condition); group 2, lingual vertical 1mm reinforcement on connector; group 3, lingual vertical 2mm reinforcing on connector and group 4, lingual vertical 3mm reinforcing on connector. Specimens were subjected to compressive loading on the central fossa of pontic by instron. SEM was used to identify the initial crack and characterize the fracture mode. Results: The results were as follows: 1. The mean fracture load of the non-lingual reinforcing group was 1212N and the lingual vertical 1mm reinforcing group was 1510N, the lingual vertical 2mm reinforcing group was 1882N, the lingual vertical 3mm reinforcing group was 1980N. 2. The reinforcing groups were statistically significant compared to non-reinforcing groups(P<0.001). 3. There were 2, 3mm reinforcing groups that were statistically significant compared to 1mm reinforcing groups(P<0.001), and the 3mm reinforcing group was not statistically significant compared to 2mm reinforcing groups(P>0.05) 4. Fractures were initiated in gingival embrasures of connectors and processed to the loading site. Conclusion: In this study, lingual reinforcement of connector for improved strength of zirconia based fixed partial denture is nessasary. And long-term study for clinical application is required