• Title/Summary/Keyword: reinforcing ratio

Search Result 435, Processing Time 0.02 seconds

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

A Study on the Confined Effects of Highly Moistured Soils Reinforced with Geosynthetics (토목섬유가 보강된 고함수비 흙의 구속효과에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Kang, Sang-Kyun;Lee, Hyung-Jun;Choi, Moon-Bong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • This study confirms reinforcing effect of geosynthetics in the use of soil at higher water contents as a compaction material on compaction tests, field compaction tests, and numerical analysis. To verify a confined effect, a large mold(area ratio of rammer / mold = 0.19) larger than D compaction mold(area ratio of rammer / mold = 0.33) was performed for compaction. It showed that in the D compaction test, dry density were 0.5~0.6% increases and in the compaction test using the large mold, it were 2.4~3.7% increases at high water contents. It shows that when the area of compacted area is large enough, a confined effect could be arising from the reinforcement of geosynthetics even at high water contents. As a result of analyzing of compaction effects according to 'depth(z/B) from compacted surface' in the field, when not reinforced, the compaction state deteriorated due to the over-compaction and the compaction did not work well. However, when reinforcement of geosynthetics, restraint effect by geosynthetics occurs, it is confirmed that the compaction energy is effectively transferred to the compaction layer and the dry density is increased. Also, through the conceptual model of the behavior of geosynthetic and soil layer, the mechanism in the ground due to reinforcement of geosynthetics is presented and it is verified through finite element analysis.

Flexural Performance of PHC Piles with Infilled concrete and Longitudinal Reinforcing Bars (속채움 콘크리트 및 길이방향 철근으로 보강된 PHC 파일의 휨성능)

  • Han, Sun-Jin;Lee, Jungmin;Kim, Min-Seok;Kim, Jae-Hyun;Kim, Kang Su;Oh, Young-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.77-84
    • /
    • 2021
  • In this study, flexural tests of prestressed high strength spun concrete (PHC) piles reinforced with infilled concrete and longitudinal rebars were conducted, where the longitudinal rebar ratio and the presence of sludge formed on the inner surface of PHC pile were set as key test variables. A total of six PHC pile specimens were manufactured, and their flexural behaviors including failure mode, crack pattern, longitudinal strain distribution in a section and end slip between external PHC pile and infilled concrete were measured and discussed in detail. The test results revealed that the flexural stiffness and strength increased as the longitudinal rebar ratio became larger, and that the sludge formed on the inner surface of PHC pile did not show any detrimental effect on the flexural performance. In addition to the experimental approach, this study presents a nonlinear flexural analysis model considering compatibility conditions and strain and stress distributions of the PHC piles and infilled concrete. The rationality of the nonlinear flexural analysis model was verified by comparing it with test results, and it appeared that the proposed model well evaluated the flexural behavior of PHC piles reinforced with infilled concrete and longitudinal rebars with a good accuracy.

Influence of Transverse Reinforcement Elements for Flexural Strength of Lap Spliced Ultra-high-strength Reinforced Concrete Beams (겹침이음된 초고강도콘크리트 보의 휨강도에 횡방향보강 요소가 미치는 영향)

  • Bae, Baek-Il;Choi, Hyun-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.135-142
    • /
    • 2022
  • In this study, lap spliced ultra-high strength reinforced concrete beams were tested and the code criteria for calculating the lap splice length which was affected by the transverse reinforcement and concrete covering performance were reviewed. The main variables for test were set as fiber volume fraction and transverse reinforcing bar arrangement to improve the confining performance of the concrete cover. The change of the confining performance of concrete cover according to the increase in the fiber mixing amount at 1% and 2% volume ratio was examined, and D10 stirrups with a spacing of 100 mm were placed in the lap spliced region. As a result of the test, the specimens confined by the stirrups showed a sudden drop of load bearing capacity with horizontal cracking at the position of tensile longitudinal reinforcement. However, horizontal cracks were not appeared at the location of longitudinal reinforcement for the specimens with steel fiber. And these specimens showed gradual decrease of load bearing capacity after experiencing peak load. In particular, it was found that the strain at the position of the tensile longitudinal reinforcements of the specimens to which the mixing ratio of 2% was applied exceeds the yield strain. As a result of measuring the strain on the concrete surface, it was found that the fiber was more effective in preventing damage to the concrete surface than the stirrups for short lap spliced region.

Tensile Behavior of Hybrid Fiber Reinforced Cement Composite According to the Hooked Steel Fiber and Polyvinyl Alcohol Fiber Blending Ratio and Strain Rate (후크형 강섬유와 폴리비닐알코올 섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장거동)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.98-105
    • /
    • 2017
  • In this study, the fiber blending ratio and strain rate effect on the tensile behavior of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber and polyvinyl alcohol fiber were used for reinforcing fiber. The fiber blending ratio of HSF+PVA were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, the tensile strength, strain capacity and fracture toughness of the hooked steel fiber reinforced cement composites were improved by the increase of the bond strength of the fiber and the matrix according to increase of strain rate. However, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by micro cracks in the matrix around hooked steel fiber. On the other hand, PVA fiber showed cut-off fracture at strain rate $10^{-6}/s$ with multiple cracks. However, at the strain rate $10^1/s$, the multiple cracks and strain capacity were decreased because of the pull-out fracture of PVA fiber. The HSF1.5PVA0.5 shown the highest tensile strength because the PVA fiber suppressed the micro cracks in the matrix around the hooked steel fiber and improved the pull-out resistance of hooked steel fiber. Thus, DIF of strain capacity and fracture toughness of HSF1.5PVA were greatly improved. In addition, the synergistic response of fracture toughness was positive because the tensile stress was slowly decreased after the peak stress by improvement of the pull-out resistance of hooked steel fiber at strain rate $10^1/s$.

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.

A Study on the Guidelines on the Insertion of Metal Stiffeners in the Restoration of Stone Cultural Heritages (석조문화재 복원을 위한 금속보강재 매입방법 표준화 연구)

  • Lee, Dong-sik;Kim, Hyun-yong;Kim, Sa-dug;Hong, Seong-geol
    • Korean Journal of Heritage: History & Science
    • /
    • v.46 no.3
    • /
    • pp.212-228
    • /
    • 2013
  • Stone cultural heritages are repaired by the use of metal stiffeners. The problem is that this type of repair has been based on the experience of workers without specific guidelines and has caused various problems. This is to suggest the structural reinforcement and behavioral characteristics of metal rods to minimize the secondary damage of materials and have the specimens tested and verified to establish the guidelines on how to insert metal stiffeners. When only epoxy resin is applied to the cut surface, only 70% of the properties of the parent material are regenerated and it is required to structurally reinforce the metal stiffener for the remaining 30%. The metal rod is under the structural behavior after the brittle failure of stone material and the structural behavior does not occur when the metal stiffener is below 0.251%. When it accounts for over 0.5%, it achieves structural reinforcement, but causes secondary damage of parent materials. The appropriate ratio of metal stiffener for the stone material with the strength of $1,500kgf/cm^2$, therefore, should be between 0.283% and 0.377% of the cross section of attached surface to achieve reversible fracture and ductility behavior. In addition, it is more effective to position the stiffeners at close intervals to achieve the peak stress of metal rod against bending load and inserting the stiffener into the upper secions is not structurally supportive, but would rather cause damage of the parent material. Thus, most stiffeners should be inserted into the lower part and some into the central part to work as a stable tensile material under the load stress. The dispersion effect of metal rods was influenced by the area of reinforcing rods and unrelated to their diameter. However, it ensures stability under the load stress to increase the number of stiffeners considering the cross section adhered when working on large-scale structures. The development length is engineered based upon the diameter of stiffener using the following formula: $l_d=\frac{a_tf_y}{u{\Sigma}_0}$. Also, helically-threaded reinforcing rods should be used to perform the behaviors as a structural material.

Evaluation of Tensile Material Properties and Confined Performance of GFRP Composite Due to Temperature Elevation (콘크리트 횡구속용 GFRP 보강재의 온도변화에 따른 인장 재료특성 및 구속성능 평가)

  • Jung, Woo-Young;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3562-3569
    • /
    • 2013
  • The performance of concrete structure decreases with change in time and the external environment. In order to reinforce the structure, the research about new material development and application of newly developed materials are widely conducted. In the case of composite FRP, it received good attention in the academia due to its high intensity-weight ratio, excellent corrosion resistency as well as good workability. When applying at the construction field, however, the utilization of FRP did not increase as much due to lack of reliability and design standard. Current study investigated the material characteristics during the temperature change at high temperature and the structural behavior from restraint effect for GFRP reinforcing materials. Two experimental variables were set in this study: GFRP reinforcements due to tensile properties of temperature and restraint compression effects. Three concrete specimen were selected for each set temperatures. For this reason, as a variable to experiment with the effects confined compression concrete members value and tensile properties with temperature reinforcement GFRP, experiment produced three pieces each for each set temperature, the concrete specimen, which is confined in the GFRP was selected each I did. For the temperature change during the experiment, the concrete specimen were mounted in order to expose to experimental high temperature for certain period of time. For compression performance evaluation, reinforcement effect from horizontal constraint of the fiber were measured using an Universal Material Testing Machine (UTM). Finally, this study revealed that the binding characteristics of GFRP materials from temperature change decreased. Also, this study showed that the maximum compression intensity decreased as the temperature increased up to $150^{\circ}C$ in the constraints ability of the GFRP reinforcements during the horizontal constraint of concrete.

Diagnostic Analysis on Oral Health Education of Primary School's Health Teacher (초등학교 보건교사의 구강보건교육 진단)

  • Kim, Ka-Young;Choi, Kyung-Hee
    • Journal of dental hygiene science
    • /
    • v.11 no.3
    • /
    • pp.189-197
    • /
    • 2011
  • Objectives : The systematic health education to form the basic healthy lifestyle should be realized from elementary school, so oral health education at elementary school can determine the whole lifetime oral health. The elementary school health teacher's recognition and behavior who in charge of health promotion of students is important. Therefore, the study was conducted to enhance oral health education. Methods : Total 114 people among of 131 from health teacher Gwangju elementary school. Survey system is configured by referring to PRECEDE model. Results : In behavioral diagnosis the proportion of oral Health Education is less than 10%(58.8%), mostly educated in activity time (86.0%), the health teachers educate when it is needed(53.5%). In predisposing diagnosis in the eight areas of health education, the oral health education is ranked as fourth, fifth. Even in the next year project, the oral health education ratio was 21.9 percent. In enabling diagnosing every year the Oral health education training experienced rate is 13.2%, satisfaction rate is 33.3%. In reinforcing diagnosing disability element in the regular education course are the lack of oral health-related information (46.7%), lack of materials needed for education (30.6%), lack of training opportunities (21.4%). Conclusion : In further research, oral health education textbooks, materials and methods should be developed. At the foundation of there developments, the elementary oral health education program should be more fully developed and conducted and also the evaluation of its effectiveness will need.

Influence of Temperature on Chloride Ion Diffusion of Concrete (콘크리트의 염화물이온 확산성상에 미치는 온도의 영향)

  • So, Hyoung-Seok;Choi, Seung-Hoon;Seo, Chung-Seok;Seo, Ki-Seog;So, Seung-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2014
  • The long term integrity of concrete cask is very important for spent nuclear fuel dry storage system. However, there are serious concerns about early deterioration of concrete cask from creaking and corrosion of reinforcing steel by chloride ion because the cask is usually located in seaside, expecially by combined deterioration such as chloride ion and heat, carbonation. This study is to investigate the relation between temperature and chloride ion diffusion of concrete. Immersion tests using 3.5% NaCl solution that were controlled in four level of temperature, i.e. 20, 40, 65, and $90^{\circ}C$, were conducted for four months. The chloride ion diffusion coefficient of concrete was predicted based on the results of profiles of Cl- ion concentration with the depth direction of concrete specimens using the method of potentiometric titration by $AgNO_3$. Test results indicate that the diffusion coefficient of chloride ion increases remarkably with increasing temperature, and there was a linear relation between the natural logarithm values of the diffusion coefficients and the reciprocal of the temperature from the Arrhenius plots. Activation energy of concrete in this study was about 46.6 (W/C = 40%), 41.7 (W/C = 50%), 30.7 (W/C = 60%) kJ/mol under a temperature of up to $90^{\circ}C$, and concrete with lower water-cement ratio has a tendency towards having higher temperature dependency.