• 제목/요약/키워드: reinforcing ratio

Search Result 435, Processing Time 0.029 seconds

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

Evaluation on Stress-Strain-Strength Behavior of the Textile Encased Soils via Triaxial Compression Tests (삼축압축시험을 통한 섬유로 구속된 흙의 응력-변형률-강도 거동 평가)

  • Yoo, Wan-Kyu;Kim, Byoung-Il;Cho, Wanjei
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.643-653
    • /
    • 2013
  • Recently, there are an increasing number of studies on the method of wrapping the outer wall of granular piles with geosynthetic fibers such as geotextile or geogrid that has a certain level of tensile strength as an alternative method for the ground improvement techniques. In this study, triaxial compression tests are performed on the sand and clay specimen encased with various textiles to evaluate the reinforcing effect with regard to the tensile strength of the textile. Furthermore, triaxial compression tests are performed on the clay specimen inserted by sand only and sand encased with geosynthetics to compare behavioral differences between the conventional sand compaction pile and geosynthetic encased sand pile with regard to the replacement ratio, ${\alpha}_s$ and the tensile strength of the geosynthetics. Based on the experimental results, the strength enhancement due to the textile is affected by the longitudinal tensile strength rather than the transverse one of the applied textile. The effect of the confinement by the textile encasement results in the large increase of the cohesions. The overall behaviors, such as shear strength, pore pressure parameter at failure and stress ratio, of the geosynthetic encased sand pile is quite different from those of the conventional sand compaction pile.

Characteristics of Foam Concrete with Application of Mineral Admixture (무기혼화재 적용에 따른 기포콘크리트의 특성)

  • Kim, Sang-Chel;Kim, Yun-Tae
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • self-loading, various problems related to construction can be solved as well as the save of construction cost. Thus, this study has an aim of applying foam concrete to structural purpose by adding bottom ash as a reinforcing material like fine aggregate, in contrast to conventional non-structural usage such as soundproofing or insulating materials. In addition, it was evaluated in terms of unit volume weight, flow value, air void, water absorption and dosage of foam agent wether replacement of cement by granulated blast furnace slag or fly-ash has an effect on the material characteristics of foam concrete. As results of experiments, it can be found that the increase of fine aggregate ratio, that is to say, the increase of bottom ash results in the increase of unit volume weight, while decreasing air void and flow value. But, appropriate addition of bottom ash to foam concrete makes it easy to control a homogeneous and uniform quality in foam concrete due to less sensitive to bubbles. As the replacement ratio of mineral admixtures such as granulated blast furnace slag and fly-ash increases, as unit volume weight tends to decrease. In the meanwhile, serious effects were shown on fluidity of foam concrete when more than limit of replacement ratio was applied.

  • PDF

The Bond Characteristics of Deformed Bars in Recycled Coarse Aggregates Concrete (RCAC) (순환골재 콘크리트와 이형철근의 부착 특성)

  • Jeon, Su-Man;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.165-173
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. For practical application, it is very important to study bond behavior of reinforcing bars in recycled aggregate concrete (RAC). Thirty six pull-out tests were carried out in order to investigate the bond behaviour between recycled coarse aggregate concrete (RCAC) and deformed bars. RCA replacement ratios (i.e., 0%, 30%, 60% and 100%) and positions of deformed bar (i.e., vertical and horizontal position) were considered as variables in this paper. Each specimen was in the form of a cube, with edges of 150 mm in length and for the pull-out tests, a deformed bar, 13 mm in diameter, was embedded in the center of each specimen. Based on the test results, the bond strength between the RCAC and deformed bars were influenced by both RCA replacement ratios and positions of deformed bars. It was found that under the equivalent mix proportion (i.e., the mix proportions are the same, except for different RCA replacement ratios), the bond strength between the RCAC and the ribbed bar has no obvious relation with the RCA replacement ratio, whereas the positions of deformed bars have a significant effect on the bond behavior between the RCAC and deformed bars. Under the condition of same RCA replacement ratio, the specimen of horizontal reinforcement at upper position (HU type) appear considerably low bond stress.

A study of Improvement of Stiffness for Plastic PET bottle with Different Geometries and Numbers of Rib (리브 형상 및 개수에 따른 사각플라스틱 페트병의 강성보강에 관한 연구)

  • Young-Hoon Lee;Bum-Jin Park;Eui-Chul Jung;Jung-Gil Oh;Seok-Guwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.4
    • /
    • pp.33-41
    • /
    • 2023
  • Excessive use of plastic bottles contributes to a significant environmental issue due to the high volume of plastic waste generated. To address this, efforts are needed to reduce the weight of plastic bottles. However, indiscriminate weight reduction may compromise the essential rigidity required for plastic bottles. Extensive research on rib shape for pressure vessels are exists, but there is a few research of rib shapes to enhance the stiffness of plastic bottles. The following results were obtained from the analyses conducted in this study. 1) Among the rib cross-sections of square, trapezoid, and triangle, the buckling critical load of PET bottles with square-shaped ribs is improved by about 14% compared to the buckling critical load of PET bottles without ribs. 2) The buckling critical load is improved by about 18% when a square-shaped rib with an aspect ratio of 0.2 is applied, compared to the buckling critical load of the bottle without the rib. 3) When longitudinal and transverse square ribs were applied to the axial direction of the PET bottle, the buckling critical load was improved by about 32% and 58% compared to the buckling critical load of the PET bottle without ribs, respectively, indicating that applying longitudinal ribs is effective in reinforcing the stiffness of PET bottles. 4) When 14 transverse ribs were applied, the maximum improvement was about 48% compared to the buckling critical load of the plastic bottle without ribs. 5) When 3 longitudinal ribs were applied on each side, the maximum improvement was about 76% compared to the buckling critical load of the bottle without ribs. Therefore, it was concluded that for effective stiffness reinforcement of a 500ml square bottle with a thickness of 0.5mm, 3 square-shaped ribs with an aspect ratio of 0.2 should be applied in the longitudinal direction relative to the axial direction of the bottle.

Self-perception of the Amount of Medical Aid Use of Outpatient Overusers in Korea (의료급여 외래 과다이용자의 의료이용량에 대한 자기인식)

  • Shin, Sun-Mi;Kim, Eui-Sook;Lee, Hee-Woo
    • Health Policy and Management
    • /
    • v.19 no.2
    • /
    • pp.21-35
    • /
    • 2009
  • Limited studies examined Medical Aid recipients' perception for amount of medical use. This study aimed to identify self-perception(optimal, under and overutilization) for amount, and real amount of medical use, and to determine factors associated with the perception. Subjects were 2,489 Medical Aid recipients among top 2% overusers in 2005. 200 case managers(CM) managing them conducted survey. CM interviewed them using 2005 medical claiming data from the Health Insurance Review & Assessment Service and structured questionnaire. Despite of overusers, perception of overutilization was only 26.9% and 23.6% in Class I and Class II, and that of underutilization was 21.4% and 18.7% respectively. In Class I, monthly total outpatient cost per capita of overutilization perception in 2006 was 206 thousand won higher than 150 thousand won of optimal utilization. Amounts of outpatient visit-days and prescribed cases of overutilization perception were higher than those of optimal and underutilization(p <0.0001). In Class II, overutilization perception had more prescribed cases(p 0.004). After adjustment of confounding factors including age and sex, the associated factors(odds ratio) with overutilization perception were hypertension(1.25), arthritis(1.32), depression(1.66), visit of multi medical institutions(3.09), and those of the underutilization were female(1.34), disabled(1.27), no family support(1.49), living in medium and small city(1.48), experience of unabled-visit to medical institution(2.54), frequent visit-recommendation from physician (1.36). In conclusion, education and consult are needed for subjects to improve the reasonable decision of medical use, and the self-care ability to manage diseases and symptoms. We suggest reinforcing the alternative service in community instead of costly medical institution.

Preparation of Cellulose Nanofibril/Regenerated Silk Fibroin Composite Fibers

  • Lee, Ji Hye;Bae, Chang Hyun;Park, Byung-Dae;Um, In Chul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.26 no.2
    • /
    • pp.81-88
    • /
    • 2013
  • Wet-spun silk fibers have attracted the attention of many researchers because of 1) the unique properties of silk as a biomaterial, including good biocompatibility and cyto-compatability and 2) the various methods available to control the structure and properties of the fiber. Cellulose nanofibrils (CNFs) have typically been used as a reinforcing material for natural and synthetic polymers. In this study, CNF-embedded silk fibroin (SF) nanocomposite fibers were prepared for the first time. The effects of CNF content on the rheology of the dope solution and the characteristics of wet-spun CNF/SF composite fibers were also examined. A 5% SF formic acid solution that contained no CNFs showed nearly Newtonian fluid behavior, with slight shear thinning. However, after the addition of 1% CNFs, the viscosity of the dope solution increased significantly, and apparent shear thinning was observed. The maximum draw ratio of the CNF/SF composite fibers decreased as the CNF content increased. Interestingly, the crystallinity index for the silk in the CNF/SF fibers was sequentially reduced as the CNF content was increased. This phenomenon may be due to the fact that the CNFs prevent ${\beta}$-sheet crystallization of the SF by elimination of formic acid from the dope solution during the coagulation process. The CNF/SF composite fibers displayed a relatively smooth surface with stripes, at low magnification (${\times}500$). However, a rugged nanoscale surface was observed at high magnification (${\times}10,000$), and the surface roughness increased with the CNF content.

Evaluation of Compressive Strength of Assembled Column System Reinforced with Cross-Arms and Stayed Struts (수평재 및 사재로 보강된 조립기둥시스템의 압축강도 평가)

  • Kim, Kyung Sik;Park, Hyun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2169-2179
    • /
    • 2013
  • The compressive strengths of simply supported columns may be significantly increased by reinforcing them with an assemblage of cross-arms and stayed struts connecting both ends of the columns and the cross-arm members. The purpose of the stayed struts and cross-arms is to introduce partial restraints against translation and rotation, thereby decreasing the effective buckling length of the column. In this study, buckling strengths of the assembled column system have been quantitatively evaluated from the theoretical methods based on both the equivalent spring model and the stiffness matrix formulation. And the results were compared with those from elastic/inelastic analysis using a finite element analysis package program, ABAQUS, for verification purpose. Expected compressive strength curves have been proposed for the assembled column system as a function of slenderness ratio of the simply supported column.

Allowable Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Sand (Geogrid로 보강된 사질토층에 정방향 얕은 기초의 허용지지력에 관한 연구)

  • Yeo, Byung Chul;Shin, Bang Woong;Das, Braja M.;Puri, Vijay K.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.335-341
    • /
    • 1994
  • Laboratory model test results for bearing capacity of a square shallow foundation supported by a sand layer reinforced with layers of geogrid have been presented. Use of geogrids provides an economical and time efficient method for improving load-settlement, and strength characteristics of weak soils. Especially the geogrid reinforced soil will be necessary in the case of foundations supporting machines, embankments for railroads, and foundations of structures in earthquake-prone areas. Based on the present model test results, the bearing capacity ratio (BCR) with respect to the ultimate bearing capacity (UBC), at levels of limited settlement of the shallow foundation. has been determined. Also, it appears that significant improvement in the UBC of medium sands can be achieved by reinforcing elements which shows promise for future work.

  • PDF

Structural Performance Evaluation of Reinforced Concrete Beams with Externally Bonded FRP Sheets (RC 구조물에 적용된 부착식 휨보강공법의 보강성능 평가)

  • Hong, Geon-Ho;Shin, Yeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.78-86
    • /
    • 2003
  • Reinforced concrete beams are often retrofitted with various FRP composite sheets. This paper is focused on the comparison of structural performance of various FRP sheets and proposal of the retrofitting design formula. Effects of the FRP kinds(AFRP, GFRP, CFRP) and the reinforcing steel ratio on behavior of the retrofitting beams are tested and analyzed with particular emphasis on the maximum load capacity, stiffness, and ductility. The experimental work included 4 point flexural testing of 3.2m span reinforced concrete beams with bonded external reinforcements. The results show that the difference of FRP kinds is not large and the flexural load capacity is mainly affected by stiffness of the retrofitting materials. This paper also proposes the design formula on the retrofitting reinforced concrete flexural members and checks with this experimantal work and previous research results.