• Title/Summary/Keyword: reinforcing

Search Result 3,014, Processing Time 0.03 seconds

An innovative system to increase the longitudinal shear capacity of composite slabs

  • Simoes, Rui;Pereira, Miguel
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.509-525
    • /
    • 2020
  • Steel-concrete composite slabs with profiled steel sheeting are widely used in the execution of floors in steel and composite buildings. The rapid construction process, the elimination of conventional replaceable shuttering and the reduction of temporary support are, in general, considered the main advantages of this structural system. In slabs with the spans currently used, the longitudinal shear resistance commonly provided by the embossments along the steel sheet tends to be the governing design mode. This paper presents an innovative reinforcing system that increases the longitudinal shear capacity of composite slabs. The system is constituted by a set of transversal reinforcing bars crossing longitudinal stiffeners executed along the upper flanges of the steel sheet profiles. This type of reinforcement takes advantage of the high bending resistance of the composite slabs and increases the slab's ductility. Two experimental programmes were carried out: a small-scale test programme - to study the resistance provided by the reinforcing system in detail - and a full-scale test programme to test simply supported and continuous composite slabs - to assess the efficacy of the proposed reinforcing system on the global behaviour of the slabs. Based on the results of the small-scale tests, an equation to predict the resistance provided by the proposed reinforcing system was established. The present study concludes that the resistance and the ductility of composite slabs using the reinforcing system proposed here are significantly increased.

U-shaped reinforcement for bond splitting prevention in RC beams (고강도 전단 보강근과 비폐쇄형 보강근의 혼용에 의한 RC보의 보강 효과)

  • Kwak, Sung-Guen;Lee, Hyun-A;Yoon, Hye-Sun;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.201-204
    • /
    • 2006
  • The shear resistance of RC beams is subject to the amount of shear-reinforcing bars ($p_w$) and yield strength ($f_{wy}$) as well as their interactive influence ($p_wf_{wy}$). Thus, it is reasonably expected that high-strength steel bars can greatly reduce the necessary amount of shear-reinforcing bars. On the other hand, although the bond strength is influenced by the amount of shear reinforcing bars, it is not affected by the yield strength. Thus, there is often an issue that bond failure occurs before shear failure depending on the arrangement of shear reinforcing bars. It is a common practice to set sub-ties for the transverse confinement of the main re-bars as a method to prevent the bond failure. However, it can also become a factor in decreased work efficiency due to the complexity of the construction. This study experimented with simultaneous use of high-strength transverse reinforcing bars ($f_{wy}=800MPa$) and U-shaped transverse reinforcing bars of regular strength ($f_{wy}=300MPa$) in an attempt to decrease the necessary quantity of shear reinforcing bars. The effect of this attempt was investigated through fundamental experimental research in terms of the improvement in shear resistance and bond strength as well as the ease of construction.

  • PDF

FRACTURE STRENGTH BETWEEN DIFFERENT CONNECTOR DESIGNS OF ZIRCONIA CORE FOR POSTERIOR FIXED PARTIAL DENTURES MANUFACTURED WITH CAD/CAM SYSTEM (CAD/CAM을 이용한 구치부 전부도재 고정성 국소의치 지르코니아 코어의 연결부 설계에 따른 파절강도)

  • Seo Jun-Yong;Park In-Nim;Lee Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.1
    • /
    • pp.29-39
    • /
    • 2006
  • Statements of problem: Zirconia core is used for posterior fixed partial dentures because it's good mechanical properties. Stress is concentrated on connectors in fixed partial dentures, so the proper design of connector areas is needed for adequate mechanical long-term properties of any prosthesis. The area of connector is critical, but tooth size and surrounding soft tissue limit the connector design. Purpose: The purpose of this study is to compare fracture strengths between different connector designs of zirconia core for posterior fixed partial dentures manufactured with CAD/CAM system and determining the optimal connector design satisfying strength and hygiene. Material and method: The following four groups of 40 posterior fixed partial denture specimens(each group 10) were fabricated as followed; group 1 vertical height of connector is 3mm (control group, all groups have the same condition); group 2, lingual vertical 1mm reinforcement on connector; group 3, lingual vertical 2mm reinforcing on connector and group 4, lingual vertical 3mm reinforcing on connector. Specimens were subjected to compressive loading on the central fossa of pontic by instron. SEM was used to identify the initial crack and characterize the fracture mode. Results: The results were as follows: 1. The mean fracture load of the non-lingual reinforcing group was 1212N and the lingual vertical 1mm reinforcing group was 1510N, the lingual vertical 2mm reinforcing group was 1882N, the lingual vertical 3mm reinforcing group was 1980N. 2. The reinforcing groups were statistically significant compared to non-reinforcing groups(P<0.001). 3. There were 2, 3mm reinforcing groups that were statistically significant compared to 1mm reinforcing groups(P<0.001), and the 3mm reinforcing group was not statistically significant compared to 2mm reinforcing groups(P>0.05) 4. Fractures were initiated in gingival embrasures of connectors and processed to the loading site. Conclusion: In this study, lingual reinforcement of connector for improved strength of zirconia based fixed partial denture is nessasary. And long-term study for clinical application is required

Detecting location of reinforcing bars in concrete using synthetic aperture radar method (합성개구 레이더법에 의한 콘크리트 내 철근위치 산정)

  • Park, Seok-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.602-605
    • /
    • 2006
  • Locating reinforcing bars, in particular to know their accurate depths and horizontal distances, is very important in radar inspection of concrete structures. By the way, it is not easy for an accurate depth and horizontal distance estimation of reinforcing bars in concrete structures by the radar test. This problem can be solved by synthetic aperture radar method. To improve the vertical and horizontal resolution of reinforcing bars in concrete, synthetic aperture radar method was examined in this study.

  • PDF

Enhancing the Performance of High-Strength Concrete Members Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 구조 부재의 성능 향상)

  • Yang, Jun-Mo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.479-480
    • /
    • 2010
  • The efforts to achieve high-performance, durable reinforced concrete structures have increased the demands for improving the performance of both the concrete and the reinforcing materials. Researches for the hybrid reinforcing technique, which is maximizing the performance of high-strength concrete structures by applying the combination of high performance reinforcing materials, were performed in this study.

  • PDF

The Application of Impressed Current System for the Corrosion Control of Reinforcing Steel in Concrete (콘크리트 중의 철근부식 방지를 위한 외부전원법의 적용)

  • 문한영;김성수;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.197-202
    • /
    • 1997
  • Recently the interest in the reinforcing steel corrosion due to the use of sea-sand and deicing salt, marine environment, and carbonation in RC structures is increasing, therefore the studies on the corrosion control of reinforcing steel in concrete are vigorously proceeding. In this study, from the viewpoint of electrochemical process of steel corrosion in concrete we applied the impressed current system among the cathodic protections to reinforcing steel in concrete and ascertained the protection effect by half-cell potential, corrosion rate, and depolarization.

  • PDF

A Study of Non-destructive Measurement on the Reinforced Concrete Structure Damaged by Reinforcing Steel Corrosion (철근콘크리트구조물의 철근부식에 대한 비파괴 측정과 부식에 따른 균열거동)

  • 김성운;정한중;김창환;임선택
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.80-85
    • /
    • 1991
  • This experimental study was performed to derive the relationship between the measured values(corrosion potential) and the actual amount of corrosion products(reinforcing steel weight loss rate). Also the growth of crack due to the steel corrosion was oberved. First, the reinforcing steel of R/C specimen was corroded with chloride penetration and accelerated galvanostatic corrosion method. And then, the corrosion potential of reinforcing steel was measured with nondestructive tester.

  • PDF

Bend Resistance of Polymer Cement Slurry Coated Reinforcing Bars

  • Kim, Wan-Ki;Chang, Sung-Ju;Kim, Hyun-Ki;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.42-48
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by both the adhesion strength between bar and coating materials, and the followed transformation of coating material as bars bend. Especially, tearing state or partial microscopic cracks are predicted on the inside and outside of bending angle, because tensile strength and elongation of polymer film are very different according to types of polymer dispersions in bar coating, and these damaged parts are rapidly corroded by penetration of corrosive factors. In this study, polymer cement slurry coated reinforcing bars with various polymer dispersions are prepared by following combined conditions, polymer-cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 28days. Then the specimens are tested for working life and bend resistance at bending angles $90^{\circ}$, $135^{\circ}$and $180^{\circ}$ to observe the microscopic damage effect as the bars bend. Also, epoxy-coated reinforcing bars for control experiment were used with 250$\mu$m of coating thickness. The tensile strength for polymer films is performed. From the test results, the working life of the polymer cement slurry is within 90 seconds. Among four types of polymer dispersion, polymer cement slurry coated reinforcing bar using St/BA-1 emulsion has the excellent bend resistance, which is remarkably improved than that of epoxy-coated reinforcing bar. And the bend resistance is more related to elongation than tensile strength of polymer film. Polymer cement slurry with a polymer-cement ratio of 100%, a coating thickness of $450\mu$m and one coating using St/BA emulsion is selected as a most suitable coating material for coated reinforcing bar.

  • PDF

Evaluation of Minimum Extensibility Standard Requirements for Steel Reinforcement (철근 최소 연신율 규격에 대한 평가)

  • Lee, Jae-Hoon;Kim, Dong-Hyun;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.559-567
    • /
    • 2011
  • Recently, many researches on high strength reinforcing steel have been conducted to construct optimum reinforced concrete structures. However, the studies have shown that high strength steel shows less elongation capacity than normal strength steel. Therefore, high strength reinforcing steel may not satisfy the minimum elongation requirement of current standards. Moreover, elongation measurements may be not standardized ones since each standard has its own requirements for minimum elongation and gage length. Therefore, the standards for reinforcing steel testing must be investigated to verify the validity of Korean Standard D 3504. This research aimed to compare the requirements for minimum elongation and gage length of the Korean, American, Japanese, European, and ISO Standards. Then, the study further investigated accuracy of the standards by tensile test of reinforcing steel. The study results showed that the Korean Standard has the strictest requirement. Based on the study results, the authors proposed modified minimum elongation requirements for general reinforcing steel and new requirements for seismic reinforcing steel.

The Study on the Development of Automatic Rebar Placement System Applying Selection Method of Optimum Reinforcing Bar Group on Shear Wall (최적배근그룹 선정방법을 적용한 전단벽체의 자동배근 시스템 개발에 관한 연구)

  • Cho, Young-Sang;Kim, Dong-Eun;Jin, Hyun-Ah;Jang, Hyun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.81-89
    • /
    • 2015
  • This study takes shear wall of reinforced concrete structure as study object, and the purpose of this study is to suggest structure BIM based on automatic reinforcing bar placement system applying set-based design through the most optimum reinforcing bar placement group that was selected by applying AHP (analytical hierarchy process) method from design step. For this, the most optimum reinforcing bar placement group was selected by pairwise comparison analysis on complex standard of multiple alternatives. And shear wall automatic reinforcing bar placement system has been developed, which can automatically generate members and arrange reinforcing bar by structure design algorithm and using open API (application programming interface) provided by a BIM software vendor. As a result, the most optimum reinforcing bar placement group of the highest weight, ALT1, was selected and was generated using Tekla Structure program.