• 제목/요약/키워드: reinforcement fracture

검색결과 291건 처리시간 0.022초

Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode Loading : Formulation (I)

  • Jang Insik;Sankar Bhavani V.
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.567-577
    • /
    • 2005
  • Several methods for improving the interlaminar strength and fracture toughness of composite materials are developed. Through-the-thickness stitching is considered one of the most common ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness and moderately improves the Mode II fracture toughness. An analytical model has been developed for simulating the behavior of stitched double cantilever beam specimen under various loading conditions. For z-directional load and moment about the y-axis the numerical solutions are compared with the exact solutions. The derived formulation shows good accuracy when the relative error of displacement and rotation between numerical and exact solution were calculated. Thus we can use the present model with confidence in analyzing other problems involving stitched beams.

전단에 파괴되는 철근콘크리트 보의 해석적 연구 (FRACTURE ANALYSIS OF REINFORCED CONCRETE BEAMS FALING IN SHEAR)

  • 김우종
    • 전산구조공학
    • /
    • 제1권2호
    • /
    • pp.111-120
    • /
    • 1988
  • 이 연구는 철근콘크리트보의 전단파괴 매카니즘에 대한 근본적인 성질을 밝히기 위해서 전단균열의 생성 및 진행과정을 해석적으로 연구하였다. 유한요소법에 파괴역학(fracture mechanics)을 결합시킨 program을 이용하여서, 철근 콘크리트 보에서 균열이 진행함에 따라 바꿔지는 내부응력상태와 균열정점에서의 stress intensity factors 등을 조사하여서, 전단균열의 생성 및 진행의 근본적인 이유를 밝히고자 하였다. 해석결과로 밝혀진 사실들을 간단한 실험으로 비교 검증하였다.

  • PDF

Structure and Properties for 28 GHz Microwave Sintered PZT Nanocomposites

  • Tajima, Ken-ichi;Hwang, Hae-Jin;Sando, Mutsuo;Niihara, Koichi
    • The Korean Journal of Ceramics
    • /
    • 제4권4호
    • /
    • pp.352-355
    • /
    • 1998
  • Dense $ Pb(Zr, Ti)O_3(PZT)/Al_2O_3$ nanocomposites were prepared by the 28 GHz microwave heating method and conventional electric furnace sintering. Electrical and mechanical properties of the composites were investigated. The fracture strength of the PZT composites with 0.1vol% $Al_2O_3$ was significantly improved in both sintering methods. Smaller grain size and effective reinforcement of the PZT matrix by the second phase were considered to be responsible for the excellent fracture strength. Planar electromechanical coupling factor Kp of the composites sintered by 28GHz microwave heating was higher than that of the materical prepared by the conventional route. It seemed that the control of the reaction between PZT and $Al_2O_3$ by the microwave rapid sintering resulted in the high piezoelectric properties.

  • PDF

고무보강 폴리머 재료의 저속 충격 해석 (A study on the Impact Characteristics for Rubber Toughened polymeric Materials under Low Velocity Impact)

  • 구본성;박명균;박세만
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2004년도 춘계학술대회
    • /
    • pp.219-231
    • /
    • 2004
  • The Charpy and Izod impact tests are the most prevalent techniques used to characterize the effects of high impulse loads on polymeric materials. An analysis method for rubber toughened PVC is suggested to evaluated critical dynamic strain energy release rates(G$_c$) from the Charpy impact tester was used to extract ancillary information concerning fracture parameters in additional to total fracture energies and maximum critical loads. The dynamic stress intensity factor KID was computed for varying amounts of rubber contents from the obtain maximum critical loads and also toughening effects were investigated as well. The fracture surfaces produced under low velocity impact for PVC/MBS composites were investigated by SEM. The results show that MBS rubber is very effective reinforcement material for toughening PVC.

  • PDF

탄소격자섬유로 보강한 철근 콘크리트보의 휨파괴 특성에 관한 연구 (Flexural Behavior of Reinforced Concrete Beams Strengthened with Grid-typs Carbon Fiber Plastics)

  • 태기호
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.52-59
    • /
    • 2000
  • Flexural fracture characteristics of newly-developed Grid-type carbon fiber plastics in the deteriorated reinforced concrete structures were investigated by the four-points fracture test to verify the strengthening effects in the beam specimens. Results showed that initial cracks appeared in the boundary layers of fibers embedded in the newly-placed mortar concrete slowly progressed to the direction of supports and showed fracture of fiber plastics and brittle failure of concrete in compression in sequence after the yielding of steel reinforcement. Accordingly the reasonable area of Grid-type carbon-fiber plastics in the strengthening design of deteriorated RC structures should be limited and given based on the ultimate strength design method to avoid the brittle failure of concrete structures.

  • PDF

Simulation of corroded RC structures using a three-dimensional irregular lattice model

  • Kim, Kunhwi;Bolander, John E.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.645-662
    • /
    • 2012
  • Deteriorative effects of steel corrosion on the structural response of reinforced concrete are simulated for varying degrees of corrosion. The simulation approach is based on a three-dimensional irregular lattice model of the bulk concrete, in which fracture is modeled using a crack band approach that conserves fracture energy. Frame elements and bond link elements represent the reinforcing steel and its interface with the concrete, respectively. Polylinear stress-slip properties of the link elements are determined, for several degrees of corrosion, through comparisons with direct pullout tests reported in the literature. The link properties are then used for the lattice modeling of reinforced concrete beams with similar degrees of corrosion of the main reinforcing steel. The model is successful in simulating several important effects of steel corrosion, including increased deflections, changes in flexural cracking behavior, and reduced yield load of the beam specimens.

Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

  • Nam Sung-Hyun;Netravali Anil N.
    • Fibers and Polymers
    • /
    • 제7권4호
    • /
    • pp.372-379
    • /
    • 2006
  • The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

축방향철근의 저주파 피로 모델 (Low Cycle Fatigue Model for Longitudinal Reinforcement)

  • 고성현;이재훈
    • 콘크리트학회논문집
    • /
    • 제22권2호
    • /
    • pp.273-282
    • /
    • 2010
  • 이 연구는 기존 모델에 대한 검증 및 국내에서 생산되고 있는 철근이 반복하중을 받는 경우의 파괴특성에 대한 적합한 모델을 제시하는 것을 목적으로 한다. 이 논문은 철근콘크리트 하부구조(파일과 교각)에 배근된 축방향철근에 대한 저주파 피로 거동에 대한 모델링을 다루었고, 전체 81개의 저주파 피로 실험 데이터에 기초하여 저주파 피로 모델을 제안하였다. 제안된 저주파 피로 모델을 적용하여 비선형해석 프로그램을 개발하였고 원형 기둥 실험체에 대한 6개의 실험 결과를 대상으로 비선형 해석을 적용하고 제안모델의 정확성을 평가하였다.

FE analysis of RC structures using DSC model with yield surfaces for tension and compression

  • Akhaveissy, A.H.;Desai, C.S.;Mostofinejad, D.;Vafai, A.
    • Computers and Concrete
    • /
    • 제11권2호
    • /
    • pp.123-148
    • /
    • 2013
  • The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material element as a mixture of two interacting components and can include both softening and stiffening, while the classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different than that of the damage model, which is based on physical cracks which has no strength and interaction with the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both compression and tension yields, is applied for concrete materials. The DSC model allows also for the characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and (2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT predictions, test data and ANSYS software predictions, it is found that the model provides highly satisfactory predictions. The model allows computation of microcracking during deformation leading to the fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.