Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites

  • Nam Sung-Hyun (Fiber Science Program, Cornell University) ;
  • Netravali Anil N. (Fiber Science Program, Cornell University)
  • Published : 2006.12.30

Abstract

The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.

Keywords

References

  1. E. E. Sera, L. Robles-Austriaco, and R. P. Pama, J. Ferrocement, 20, 109 (1990)
  2. M. N. Cazaurang-Martinez, P. J. Herrera-Franco, P. I. Gonzalez-Chi, and M. Aguilar-Vega, J. Appl. Polym. Sci., 43, 749 (1991) https://doi.org/10.1002/app.1991.070430412
  3. K. Joseph, S. Thomas, C. Pavithran, and M. Brahmakumar, J. Appl. Polym. Sci., 47, 1731 (1993) https://doi.org/10.1002/app.1993.070471003
  4. S. Luo and A. N. Netravali, J. Mater. Sci., 34, 3709 (1999) https://doi.org/10.1023/A:1004659507231
  5. S. Luo and A. N. Netravali, Polym. Composite., 20, 367 (1999) https://doi.org/10.1002/pc.10363
  6. S. Luo and A. N. Netravali, J. Adhes. Sci. Technol., 15, 423 (2001) https://doi.org/10.1163/156856101300157533
  7. P. Lodha and A. N. Netravali, J. Mater. Sci., 37, 3657 (2002) https://doi.org/10.1023/A:1016557124372
  8. P. Lodha and A. N. Netravali, Polym. Compos., 26, 647 (2005) https://doi.org/10.1002/pc.20128
  9. P. Lodha and A. N. Netravali, Composites Science and Technology, 65, 1211 (2005) https://doi.org/10.1016/j.compscitech.2004.12.036
  10. B. V. Kokta, R. Chen, C. Daneault, and J. L. Valade, Polym. Compos., 4, 229 (1983) https://doi.org/10.1002/pc.750040407
  11. C. Pavithran, P. S. Mukjerjee, M. Brahmakumar, and A. D. Damodaran, J. Mater. Sci., 26, 455 (1991) https://doi.org/10.1007/BF00576542
  12. M. Wollerdorfer and H. Bader, Industrial Crops and Products, 8, 105 (1998) https://doi.org/10.1016/S0926-6690(97)10015-2
  13. A. K. Mohanty and M. Misra, Polym-Plast. Technol. Eng., 34, 729 (1995) https://doi.org/10.1080/03602559508009599
  14. D. N. Saheb and J. P. Jog, Adv. Polym. Tech., 18, 351 (1999) https://doi.org/10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.0.CO;2-X
  15. J. George, M. S. Sreekala, and S. Thomas, Polym. Eng. Sci., 41, 1471 (2001) https://doi.org/10.1002/pen.10846
  16. R. T. Woodhams, G. Thomas, and D. K. Rodgers, Polym. Eng. Sci., 24, 1166 (1984) https://doi.org/10.1002/pen.760241504
  17. F. Shafizadeh, 'The Chemistry of Solid Wood' (R. M. Rowell ed.), pp.489-529, American Chemical Society, Washington, 1984
  18. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276, 1 (2000) https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  19. M. K. Sridhar, G. Basavarajjappa, S. S. Kasturi, and N. Balsubramanian, Indian J. Text. Res., 7, 87 (1982)
  20. C. Gonzalez and G. E. Mayers, Int. J. Polym. Mater., 23, 67 (1993) https://doi.org/10.1080/00914039308009660
  21. A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci., 59, 1329 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1329::AID-APP17>3.0.CO;2-0
  22. T. T. Le Thi, H. Gauthier, R. Gauthier, B. Chabert, J. Guillet, B. V. Luong, and V. T. Nguygen, J. Macromol. Sci. Pure Appl. Chem., 33, 1997 (1996) https://doi.org/10.1080/10601329608011024
  23. R. Gauthier, C. Joly, A. C. Coupas, H. Gauthier, and M. Escoubes, Polym. Compos., 19, 287 (1998) https://doi.org/10.1002/pc.10102
  24. F. H. M. M. Costa and J. R. M. D' Almedia, Polym-Plast. Technol. Eng., 38, 1081 (1999) https://doi.org/10.1080/03602559909351632
  25. F. R. AI-Siddique, A. U. Khan, and R. A. Sheikh, World Textile Abstr., No. 4196, (1984)
  26. E. T. N. Bisanda and M. P. Ansell, J. Mater. Sci., 27, 1690 (1992) https://doi.org/10.1007/BF00542934
  27. A. Bismarck, A. K. Mohanty, I. Aranberri-Askargorta, S. Czapla, M. Misra, G. Hinrichsen, and J. Springer, Green Chemistry, 3, 100 (2001) https://doi.org/10.1039/b100365h
  28. D. Fengel and X. Shao, Wood Sci. and Technol., 18, 103 (1984) https://doi.org/10.1021/es00122a600
  29. S. Li, B. Zhou, Q. Zeng, and X. Bao, Composites, 25, 225 (1994) https://doi.org/10.1016/0010-4361(94)90020-5
  30. W. Weibull, Ing. Vetenskaps. Akad. Handl., 151, 153 (1939)
  31. H. F. Wu and A. N. Netravali, J. Mater. Sci., 27, 3318 (1992) https://doi.org/10.1007/BF01116031
  32. S. Nam and A. N. Netravali, J. Adhes. Sci. Technol., 18, 1063 (2004) https://doi.org/10.1163/1568561041257504
  33. B. C. Barkakaty, J. Appl. Polym. Sci., 20, 2921 (1971) https://doi.org/10.1002/app.1976.070201101
  34. A. K. Bledzki and J. Gassan, J. Prog. Polym. Sci., 24, 221 (1999) https://doi.org/10.1016/S0079-6700(98)00018-5
  35. M. Lewin and E. M. Pearce Eds., 'Handbook of Fiber Chemistry', Marcel Dekker, New York, 1998
  36. S. Ochi, H. Takagi, R. Takura, and R. Niki, Jsms. Composites, 30, 131 (2001)
  37. A. K. Bledzki, S. Reihmane, and J. Gassan, 'Handbook of Engineering Polymeric Materials' (N. P. Cheremisinoff ed.), pp.787-810, Marcel Dekker, New York, 1998