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Analysis of a Composite Double Cantilever Beam with Stitched
Reinforcements Under Mixed Mode Loading : Formulation (I)
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Several methods for improving the interlaminar strength and fracture toughness of composite
materials are developed. Through-the-thickness stitching is considered one of the most common
ways to prevent delamination. Stitching significantly increases the Mode I fracture toughness
and moderately improves the Mode II fracture toughness. An analytical model has been
developed for simulating the behavior of stitched double cantilever beam specimen under

various loading conditions. For z-directional load and moment about the y-axis the numerical

solutions are compared with the exact solutions. The derived formulation shows good accuracy

when the relative error of displacement and rotation between numerical and exact solution were

calculated. Thus we can use the present model with confidence in analyzing other problems

involving stitched beams.
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Nomenclature
As: Cross-sectional area of the stitch yarn

A. Cross-sectional area of beam

b ' Beam width

¢ . The length of bridging zone

E : Equivalent Young’s modulus of beam

Es: Young’s modulus of the stitch material
G : Equivalent shear modulus of beam

h: . Height of top beam

I, © Moment of inertia of beam

% ! Spring constant of stitch

M, y-directional moment at top beam

N  Number of stitches per unit area

P, | x-directional load at top beam
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t» . z-directional traction by stitch
s . x-directional traction by stitch
u: . x—directional displacement

V:: z-directional load at top beam
w, . z-directional y-displacement
¥ . Rotation about y-axis

The subscript f indicates the top beam property
and b the bottom beam property.

1. Introduction

Composite materials are utilized increasingly
in industry because of high strength with rela-
tively low weight. Especially, graphite-epoxy la-
minated composites have very high stiffness and
strength to weight ratios, which make them very
attractive in structural applications. The orienta-
tion of the fibers has significant effect on the in-
plane properties of these materials. The strength
in the thickness direction, however, is limited by
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the matrix material, and is typically about 5 to
10% of the strength in the fiber direction. There-
fore, these materials suffer from poor interlaminar
properties, and easily delaminate.

Several methods for improving the interla-
minar strength and fracture toughness of these
materials include 3D weaving, Z-pinning and
stitching. Translaminar reinforcement can be pro-
vided by inserting pins in the thickness direction
{(z-pinning) of the laminate or by stitching the
layers with suitable yarns before resin impregna-
tion. Through-the-thickness stitching is consi-
dered one of the most common ways to prevent
delamination. Sankar and Sharma (1995) report
that stitching significantly increases the Mode I
fracture toughness and moderately improves the
Mode II fracture toughness. In practical applica-
tions it is very rare to encounter pure Mode I or
Mode II loading conditions, since it is typical to
have a combination of the two modes. Ridards
and Korjakin (1998) used the traditional mixed
mode setup to test the fracture toughness of un-
stitched laminated composites. Reeder and Crews
(1992) proposed a new mixed-mode bending
method for delamination testing. This test allows
a wide range of ratios of Mode I and Mode II
and has several advantages over the traditional
methods. Chen, Ifju and Sankar (2001) develop-
ed new methodology and testing apparatus for
double cantilever beam test for stitched composite
laminates. Rugg, Cox and Massabo (2002) inves-
tigated the mixed mode delamination behavior of
carbon-epoxy laminates by using two different
test specimens. Other fracture mechanics from
cracks subjected to mixed-mode loading can be
found. Choi and Chai (2002, in Korea) inves-
tigated interfacial crack initiation and propaga-
tion using biaxial loading device for various
mixed modes. Song and Lee (2003, in Korea)
analyzed the propagation behavior of fatigue
cracks of cold rolled stainless steel under mixed
-mode conditions. Although there are several
approaches for testing of stitched composites, not
much work has been done in developing analy-
tical models. Sankar and Dharmapuri (1998)
proposed analytical method for stitched DCB
(double cantilever beam) with Mode I loading

condition. They found a closed form solution for
the problem of beam on elastic foundation and
utilized the model to simulate the DCB test and
subsequent crack propagation. Chen, Sankar and
1fju (2003) proposed a new methodology for tes-
ting mixed mode DCB specimens. The develop-
ed apparatus is very efficient to apply the mixed
mode load. They compared the results of experi-
ments and finite element analysis as well. In this
study, an analytical approach is proposed for
stitched DCB under mixed mode loading condi-
tions. The related differential equations are deriv-
ed and solved for several loading conditions. The
numerical results are compared with the exact
solutions and the accuracy of the numerical solu-
tion is discussed.

2. Analytical Model of Stitched
Double Cantilever Beam

The problem to be solved is depicted in Fig. 1.
The Timoshenko beam theory is used to deter-
mine the deflections and rotations in the stitched
beam.

It is assumed that DCB has different heights at
top and bottom parts. The applied load is re-
presented as F, x-directional load, and F;, z-
directional load, respectively. The length from
the end of beam to the first stitch is defined as
a. The bridging zone is a region in which there
exist unbroken stitches in the crack opening. The
length of bridging zone is defined as ¢ in Fig. 1.

The shape of stretched stitch is depicted in
detail in Fig. 2 when mixed mode load is ap-
plied. The points A and B are coincident before

C,
P g he

he

b

Fig. 1 Typical stitched double cantilever beam
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loading. u and w represent x-directional displa-
cement and z-directional displacement, respec-
tively. Therefore, the length of a stitch increases
by AB.

In the present study the stitch is considered as
a spring with spring constant %, which is cal-
culated as

2NAsE s (N

=t he

The factor 2 appears in Eq. {1} to account for the
two bobbin yarns that constitute ane through the
thickness stitch. Traction due to the stitches in the
x and z-directions are computed as

te=kAw="Fk(w:— ws)

(2)
=hkAu=k{u:— us)

The equilibrium equations involving, the longi-
tudinal force, shear force and bending moment
are described using the displacements and spring
constant of the stitch as follows:

AP,

= tsb= bk{us—us) (3)
‘i,V‘ = tob= bk (1w —ws) 4)
dg‘ Vi— h’ bl (1 — us) (5)

From the laminate constitutive equations we
can obtain the following relations between force
resultants and displacements:

- dus
P=AE%L (6)
M,r«lﬁ% %

Fig. 2 Deformation of a stitch under mixed mode
load

VimAG {4y, (®)

Combining (3)-(8) results in governing equa-
tions for the top part of the stitched DCB take
the form,

AE ‘fj “ bk (24— 205) =0 ©)
Bl f ~CAd~GA ‘2”‘#“‘ b (se—13) =0 (10)
GA, Ay +GA¢ «bk(wt ws) =0 (11}

Tdx
Let us define three stiffness constants for the con-

venience of representation of equations.

AE B

3 =/f3, : axial stiffness

EI‘ =D, : flexural stiffness

gG ={), : shear stiffness

Then the governing equations (9)~(11), can be
rewritten using the newly defined stiffness con-
stants.

B, “:i”; ~ k(16— tp) =0 (12)
a;,":‘ Quthe— Qe dw* h‘ Rlug—us) =0 {(13)
Q. 1o, d e we) =0 (14)

Similar equations for the bottom beam can be
derived as follows.

due,

B,

+E (e~ us) =0 (15)

2

dwb

Qs dv’t +Qb +E(we—ws) =0  (17)
It may be noted that the tractions exerted by the
stitches on the top and bottom are equal and
opposite, and hence the sign reversal in terms
containing the stiffness constant kin the equations
for the bottom beam. Boundary conditions at the
ends of the beam are as follows.
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At x=0 one can apply, in general, an axial
force, a transverse force and a couple, Therefore,
the force boundary conditions are :

P A,E‘é—” —AE ‘fi”” = Fo

Fxi, P

ds _
dx =Cs

M.=LE iﬁt :Ct, szle (18)

Vi=A.G ( a(;z;}t + v ) =Fx

Vb=AbG< ddu;b + ¢b>:sz

At x=c the rigid end boundary conditions are
given by :

we=wp=0, ¢t:¢b=0, ur=us=0 (19>

3. Solution Procedure for the
Governing Equations

The longitudinal displacements %, and #, can
be found by solving equations (12) and (15)
simultaneously. Rearranging (12) and (15) and
eliminating #, will result in a 4" order differen-
tial equation in #; as
a”Zit _<L+L
dx B: B

> kui =0 (20)

Let us assume solution of the form:
ur=ce™ (21)

By substituting the solutions from equation (21)
into the governing equation (20) we obtain the
solution :

wr=c1t cox + e+ et (22)

where

w=y ()b =y (g0 )

and from the relationship between %: and u, in
equation (12)

ub=C1+czx+Cs<]_%/12> . (23)
+c4 < 1 _% /1%) et

After applying the boundary conditions, the sim-
ultaneous equations for the unknown constants

can be represented in a matrix form

01 ,11 P b}i
01 Al1-Z22) & 1—-&/12 a B;
lc 1< e‘f ) <ex,]c€ ) Z = b% (24)
el e [

The x-directional displacement (22) and (23)
can be obtained by solving the above simulta-
neous equations.

By differentiating (14) and (17) with respect to
x and eliminating i, and w,, we can obtain the
coupled differential equations for ¥; and ¥s

Dbt~ k(G W=D 0 )+ k(= o)

(25)
kZ ht h ht 14 ”
<Qt Q:)(ut ue) =5 k(uf — u3)
//r/ Dt r/ b Yy _
Do +h (g W =0 W8 )~k (=) o

(G ) e

Let us assume the solutions of the equations (25)
and (26) as

Ye=pe™, Pr=qe"™ (27)

If we substitute the equation (27) into equations
(25) and (26) we obtain the following simulta-
neous equation for finding p and ¢

— B~ up)

Dd-k 2 gtk kDo pyy
%i—k Dud iQ Ft+h (p>=<§:> 2

where R; and R, represent non-homogeneous
terms. For the specific @;, the ratio of coefficients
p: and g; is computed as

Dtaz k Dt a2+k
k<@0’?‘1>

To make the problem simple let us assume that
the cross sections of bottom and upper beams are
identical. Then, the stiffness constants become

D.=D.=D, Qt:Qb=Q~



Analysis of a Composite Double Cantilever Beam with Stitched Reinforcements Under Mixed Mode --- 571

For the homogenous solutions we can obtain
the roots of characteristic equation :

a1,2,34=0 (30)

BT e

Homogeneous solutions for ¥ and ¥, can be

5,6,7,8— x

expressed as:

4 ) 8
¢M:§pixz—1+}§5ﬁiea,x (32)
4 . 8
Yon= 2, ripix 1+ 2, ripie™” (33)
=1 k=

The general solutions for ¥, and ¥, become

= wth+gae’“"+g4e*2"
4 ] 8
=2+ pe Tt meh + e’
Vo= Yon+ n3e’* +nae’”
4 R 8
= eribixl_l‘f' Z;npie””‘-i— hse* ¥+ hyet®

where the coefficients g and % can be obtained
by applying the particular parts in equation (28).
The constants g and /3 can be calculated using
equations (35) and (36) shown below, which are
derived from (25) and (26) by substituting the

particular solutions, ¥, =ge", V' =hse™',
and the particular functions, u:=cse™*, up=
_& Ay x
<1 A )e .
(Dit—5 kit k) gt G =k ="t (35)
<%kﬂf—k)gs+(mi‘—%k/1f+k>h3=—hTBCa/lf (36)

Similar procedures may be used to obtain g and
ha.

We need eight boundary conditions to deter-
mine p;, 7=1, -+, 8. They correspond to (18) and
(19) at the two ends of the top and bottom
beams, The expression for w; and w, that include
unknowns b;, i=1, ---, 8 can be obtained by

substituting (34) into equations (13) and (16).

(o) i(

e (B )
+<%Af—l>/1—je‘l"+< 1) ‘j’: e
+%%B(caxhe“"+a/be“")

wb=(%ps—pl)x+i(%p4—pz)x2

— pert— e+ 1) B e )

(38
+<%/F—l)h3 "‘+< _1>/12€2
J%% Bleshe™ + cibe')

By applying the eight boundary conditions relat-
ed to rotation and transverse displacements we
obtain a set of linear equations in the coefficients
P; which are given in Appendix 1. Once the
coefficients are determined, the solution of the
problem depicted in Fig. 2 is obtained. Deriving
the expressions for the deflection curve, stitch
elongation and energy release rate at the crack
tip, calculating shear force and bending moment
resultants, at any cross section are matter of str-
aightforward computation and are discussed in
the following section.

4. Numerical
Results and Discussion

Graphite/epoxy is selected as the beam materi-
al and Kevlar® is the stitch material for the
present analysis. The beam is assumed to be 7
inches long and 0.71 inch wide, stitched with 1600
denier Kevlar yarn with two yarns in each stitch.
The stitch density is 4X%” means that there are
20 stitches per square inch, where the pitch is
1/4 inch and the spacing between two adjacent
stitch rows is 1/5 inch. For simplicity we consider
that the depth of top beam is equal to that of
bottom beam. The mechanical properties of the
beam and stitch materials are summarized in
Tables 1 and 2, respectively.

To validate the formulation derived here we
compare the displacements calculated from this
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procedure with the exact solution (Young, 1989).
The bridging zone of stitched DCB under loads
is considered as a finite length beam on elastic
foundation subjected to transverse forces and ben-
ding moment. The stiffness of elastic foundation
is equivalent to the spring constant calculated in
equation (1). The exact solutions are expressed in
analytical form, and are shown in Appendix IL

The example problem is to analyze a part of
DCB with stitch reinforcement under z-direc-
tional load or moment about y-axis, which are
depicted in Fig. 1. We confine the analyzed region
within bridging zone of the beam. The length of
bridging zone, which is denoted by c, is taken as
1 inch.

Numerical and analytical results of z-direc-
tion displacement are shown in Fig. 3 for applied
z-directional loads, which are F,,=5000N and
Fz=—5000 N. It is very difficult to differentiate

Table 1 Mechanical properties of beam

Ei{psi) | E2{psi) Giz{psi) | Gis(psi) | Gas(psi)
15.04 X 108[ 1.6 X 10° 0.8X10°]0.8%10810.52X10°

(4]
0.34

Table 2 Mechanical properties of stitch

. .| Specific Tensile Elastic
Material .
gravity | strength (GPa) imodulus (GPa)
Kevlar 1.44 2.8 130
RS e
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Fig. 3 Comparison of z-direction displacement for

applied load (solid: numerical, dotted:
analytical)
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the numerical result from the analytical one in
Fig. 3 because the two results have almost same
value. We introduce the relative error, the differ-
ence between numerical solution and the exact
one divided by the largest displacement, to evalu-
ate the accuracy of the numerical result. It can be
noted from Fig. 4 that the present method is very
accurate with a maximum error of 1.4%.

The rotation of beam due to the applied z-
directional force is shown in Fig. 5. The relative
error, rotation difference divided by the largest
rotation, shows high accuracy (max. 0.7%) as
well in Fig.6.

In Fig. 7 through 10, displacements, rotation
and related relative error for applied moments

7 {
3 ;
2+ % E
i P
0 ) - T -
S 3
4 1\, -
—GU 4005 001 6015 602 G025 003
distance
Fig. 4 Relative z-direction displacement error for
applied load
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X
\
N
001+~ s
\
0005-
s - . e
i
0 005 %
0.005 0.01 0015 002 0025 093

drstance
Fig. 5 Comparison of rotation for applied load
(solid : numerical, dotted : analytical)
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Fig. 8 Relative z-direction displacement error for

applied moment

are shown. The applied moments are C;=— 5000
N-m and C»=5000 N-m. From accuracy point of
view these results represent almost same trend as
the cases of applied transverse load.

From the results above, the present formula-
tion for stitched beams is accurate enough to be
utilized to calculate the displacements for various
load conditions.

We may classify the type of load in the DCB by
the fracture Mode. Mode I case is wherein the
applied loads are symmetrical about the plane of
delamination and the crack tip is under Mode 1
fracture condition. In this mode the applied load
is in the positive z-direction on the upper beam
and negative z-direction on the lower beam as

Py
@

2 . .
G Qg0 o 0015 002 0025 003
distance

Fig. 9 Comparison of rotation for applied moment
(solid : numerical, dotted : analytical)

10"
TR

(pst-psi Vpsig( 1)
>
i
)

-2
0 0005 001 0015 602 0025 003
distance

Fig. 10 Relative rotation error for applied moment
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shown in Fig.1. The applied loads are F,=5000
N and F,=—5000N. Displacement and rota-
tion for Mode I are shown in Fig. 11. There is
no x-directional displacement because only F
load, which is depicted in Fig. 1, is applied. The
displacement in the z-direction and rotation are
shown in Figs. 12 and 13, respectively. The defor-
mations of the top and bottom parts are symmet-
ric because the heights of top and bottom beam
are equal.

In Mode II the loads are antisymmetric and
the crack tip is under Mode II condition. The
applied loads for Mode II are Fyx»=>5000 N and
Fy:=—5000N. The x-directional displacement

1
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02- -
> 0 -

02~ -

04 - =

06~ . . 4
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Fig. 11 x-direction displacement for Mode |
(solid : top, dotted : bottom)
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Fig. 12 z-direction displacement for Mode I
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0005 001 o015 002 0025 0.03
cistance

Fig. 16 Rotation for Mode II
(solid : top, dotted : bottom)

-01
Q

almost linearly decreases with respect to x as
shown in Fig. 14. However, transverse deflection
and rotation are of higher order in x, and top
and bottom parts show identical trend as shown
in Figs. 15 and 16. The stitches have an effect on
the z-direction displacements although there is
only x-directional applied load.

The results for mixed mode loading, combina-
tion of Mode I and Mode II, can be obtained by
superposition.

5. Conclusion

An analytical model has been developed for
simulating the behavior of stitched double can-
tilever beam specimen under various loading
conditions. For z-directional load and moment
about the y-axis the numerical solutions are com-
pared with the exact solutions. The stitched beam
is considered as a finite length beam on elastic
foundation when we try to find exact solutions
of the problem. The derived formulation shows
good accuracy when the relative error of dis-
placement and rotation between numerical and
exact solution were calculated. Thus we can use
the present model with confidence in analyzing
other problems involving stitched beams. The
calculations have been carried out for two differ-
ent load conditions. Three kinds of displacement,
x~ and z-directional displacements and rotation
about the y-axis, are obtained for each mode.

Mode I is the case where the applied load is
symmetric. There is no x-directional displaceme-
nt because of only z-direction load. The dis-
placement in the z-direction and rotation are
symmetrical shape because of the symmetry of the
top and bottom beams.

When a positive axial load (in the +x direc-
tion} is applied on the lower beam and a negative
load {(in the —x direction) load is applied on
the upper beam the condition becomes Mode II.
The x-directional displacement almost linearly
decreases. However, only x-directional displace-
ment is symmetric and linear in the Mode II con-
dition. The z-direction displacement and rotation
behavior of top and bottom beam is equal in the
Mode 1I. The results for mixed mode conditions
can be obtained by superposition. The methods
described in this paper can be easily extended to
other loading conditions such as applied end
couple. After the displacements are calculated, the
forces in the stitches can be determined from Eqgs.
(6-8), and can be used to find the load at which
the stitch will break. Calculation of energy release
rate at the crack tip and estimating the bridging
length etc. will be the topic of future work and
they will be discussed in a sequel to this paper.
The method developed in this paper will be useful
in analyzing progressive damage in stitched com-
posite beams and in estimating their apparent
fracture toughness.
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Appendix 1

The matrix form of linear equation in p:

Sankar, B.V. and Dharmapuri, S. M., 1998, AP=B
“Analysis of a Stitched Double Cantilever Beam.,”  where
2D D,D,D ,D 1
-1 0 = 0 4R Adod S
{ L Pébalabs
2D D ,D ,D_ ,D
1 0 Q 0 Q 75(1€ Q 7605 Q 7’70‘? Q 780§
0 0 005 05 07 0
- 0 0 0 7505 Yol rith etk
A= 2 3 asC agC a6 agC
1 c c c e e e’ et
1 ¢ c ¢ 730" rue’s* 77e"1° 78€%°
Lo laWe ¢3DE_¢ (D, e (D, Ne™ (D, \e" (D, \e
CT2¢0 T3 g 4(Qa§l>as <Qa’2‘l)ae (Qagl)ay(Qaél)as
1 2Dc 3D (D 5 .\ et D, .\ e D, \nme" (D , \re™
coyeg-g rlgen) e (ge)te (Gan) e (gan) e
£ L ket o) —5 5 Blost+ed)
e (Rhst 28h) - Blcsi+ )
—DL—ga/h—gMz
B= ﬁ—hs/h—hulz
—gse“c—g4e"zc
— hze*1¢— hye’c
A D e \& ae (D o \N&G e L k. e az¢
(G A1) & (G a—1) L etk Blehet + cukee™™)
AD e Nk se (D 2 Nha e L h e Aze
(Q/h 1)/11 e (Q/b 1)/12 ) QB(Ca/he + cize?=)
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Appendix 11

The analytical solutions of deflection and rota-
tion for z-directional load F are expressed as
follows :

wr=yar cosh Bx cos Sx

,%_(cosh Bx sin Bx+sinh fx cos fx)

~El Ba (cosh Bx sin Bx —sinh Bx cos Ax)

¥r =1 cosh Bx cos fx
—yarf3 (cosh Bx sin Bx —sinh Bx cos Bx)

F — —sinh Sx sin fx

T 4EIg
where
_F GGG
YETIEIF 2+Cu
o 2GCH GG
“TOEIF®F 2+Cu

The analytical solutions of deflection and rota-
tion for applied moment M are expressed as

follows :
um—y,qp cosh fBx cos Bx
3 4% (cosh Bx sin fr +sinh Bx cos Bx)
211%/5’2 sinh fx sin Bx
Y=Y cosh Bx cos Ax
—vaf(cosh Bx sin fx—sinh Ax cos Bx)
21%’,8 (cosh Bx sin fx+sinh Bx cos fx)
where

__ M 2GGC—CC
YMTSEIF T 2+ Ca

M CGCH+CCs
E]B 2+Cn

boko 1/4
8=(4xr)
Ci==cosh B/ cos B!
Cz=cosh B! sin B/ +sinh B/ cos B!
Cs=sinh B/ sin 5!

=cosh B! sin Bl —sinh B! cos B!
Cu=sinh* Bl —sin 2p!

Yar=



