Browse > Article

Green Composites. I. Physical Properties of Ramie Fibers for Environment-friendly Green Composites  

Nam Sung-Hyun (Fiber Science Program, Cornell University)
Netravali Anil N. (Fiber Science Program, Cornell University)
Publication Information
Fibers and Polymers / v.7, no.4, 2006 , pp. 372-379 More about this Journal
Abstract
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly 'green' composites. SEM micrographs of a longitudinal and cross sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young's modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to $160^{\circ}C$ with no decrease in tensile strength or Young's modulus. However, at temperatures higher than $160^{\circ}C$ the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9 %. These properties make ramie fibers suitable as reinforcement for 'green' composites. Also, the green composites can be fabricated at temperatures up to $160^{\circ}C$ without reducing the fiber properties.
Keywords
Ramie fiber; Green composite; Surface topography; Tensile properties; Thermal properties;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
Times Cited By SCOPUS : 9
연도 인용수 순위
1 K. Joseph, S. Thomas, C. Pavithran, and M. Brahmakumar, J. Appl. Polym. Sci., 47, 1731 (1993)   DOI   ScienceOn
2 S. Luo and A. N. Netravali, Polym. Composite., 20, 367 (1999)   DOI   ScienceOn
3 P. Lodha and A. N. Netravali, Polym. Compos., 26, 647 (2005)   DOI   ScienceOn
4 A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci., 59, 1329 (1996)   DOI   ScienceOn
5 T. T. Le Thi, H. Gauthier, R. Gauthier, B. Chabert, J. Guillet, B. V. Luong, and V. T. Nguygen, J. Macromol. Sci. Pure Appl. Chem., 33, 1997 (1996)   DOI   ScienceOn
6 F. H. M. M. Costa and J. R. M. D' Almedia, Polym-Plast. Technol. Eng., 38, 1081 (1999)   DOI
7 F. R. AI-Siddique, A. U. Khan, and R. A. Sheikh, World Textile Abstr., No. 4196, (1984)
8 E. T. N. Bisanda and M. P. Ansell, J. Mater. Sci., 27, 1690 (1992)   DOI
9 S. Li, B. Zhou, Q. Zeng, and X. Bao, Composites, 25, 225 (1994)   DOI
10 H. F. Wu and A. N. Netravali, J. Mater. Sci., 27, 3318 (1992)   DOI
11 B. C. Barkakaty, J. Appl. Polym. Sci., 20, 2921 (1971)   DOI
12 A. K. Bledzki and J. Gassan, J. Prog. Polym. Sci., 24, 221 (1999)   DOI   ScienceOn
13 S. Ochi, H. Takagi, R. Takura, and R. Niki, Jsms. Composites, 30, 131 (2001)
14 A. K. Bledzki, S. Reihmane, and J. Gassan, 'Handbook of Engineering Polymeric Materials' (N. P. Cheremisinoff ed.), pp.787-810, Marcel Dekker, New York, 1998
15 C. Pavithran, P. S. Mukjerjee, M. Brahmakumar, and A. D. Damodaran, J. Mater. Sci., 26, 455 (1991)   DOI
16 D. N. Saheb and J. P. Jog, Adv. Polym. Tech., 18, 351 (1999)   DOI   ScienceOn
17 M. N. Cazaurang-Martinez, P. J. Herrera-Franco, P. I. Gonzalez-Chi, and M. Aguilar-Vega, J. Appl. Polym. Sci., 43, 749 (1991)   DOI
18 M. K. Sridhar, G. Basavarajjappa, S. S. Kasturi, and N. Balsubramanian, Indian J. Text. Res., 7, 87 (1982)
19 B. V. Kokta, R. Chen, C. Daneault, and J. L. Valade, Polym. Compos., 4, 229 (1983)   DOI   ScienceOn
20 M. Lewin and E. M. Pearce Eds., 'Handbook of Fiber Chemistry', Marcel Dekker, New York, 1998
21 C. Gonzalez and G. E. Mayers, Int. J. Polym. Mater., 23, 67 (1993)   DOI
22 M. Wollerdorfer and H. Bader, Industrial Crops and Products, 8, 105 (1998)   DOI   ScienceOn
23 P. Lodha and A. N. Netravali, J. Mater. Sci., 37, 3657 (2002)   DOI   ScienceOn
24 F. Shafizadeh, 'The Chemistry of Solid Wood' (R. M. Rowell ed.), pp.489-529, American Chemical Society, Washington, 1984
25 A. K. Mohanty and M. Misra, Polym-Plast. Technol. Eng., 34, 729 (1995)   DOI   ScienceOn
26 D. Fengel and X. Shao, Wood Sci. and Technol., 18, 103 (1984)   DOI
27 A. Bismarck, A. K. Mohanty, I. Aranberri-Askargorta, S. Czapla, M. Misra, G. Hinrichsen, and J. Springer, Green Chemistry, 3, 100 (2001)   DOI   ScienceOn
28 J. George, M. S. Sreekala, and S. Thomas, Polym. Eng. Sci., 41, 1471 (2001)   DOI   ScienceOn
29 A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276, 1 (2000)   DOI
30 S. Nam and A. N. Netravali, J. Adhes. Sci. Technol., 18, 1063 (2004)   DOI   ScienceOn
31 P. Lodha and A. N. Netravali, Composites Science and Technology, 65, 1211 (2005)   DOI   ScienceOn
32 E. E. Sera, L. Robles-Austriaco, and R. P. Pama, J. Ferrocement, 20, 109 (1990)
33 R. T. Woodhams, G. Thomas, and D. K. Rodgers, Polym. Eng. Sci., 24, 1166 (1984)   DOI   ScienceOn
34 W. Weibull, Ing. Vetenskaps. Akad. Handl., 151, 153 (1939)
35 S. Luo and A. N. Netravali, J. Mater. Sci., 34, 3709 (1999)   DOI   ScienceOn
36 R. Gauthier, C. Joly, A. C. Coupas, H. Gauthier, and M. Escoubes, Polym. Compos., 19, 287 (1998)   DOI   ScienceOn
37 S. Luo and A. N. Netravali, J. Adhes. Sci. Technol., 15, 423 (2001)   DOI   ScienceOn