• Title/Summary/Keyword: reinforced soil walls

Search Result 134, Processing Time 0.023 seconds

Design Case Study of Geosynthetic Reinforced Segmental Retaining Walls in Tiered Configuration (다단식 보강토 옹벽의 설계 사례 연구)

  • 유충식;허병주
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.115-125
    • /
    • 2003
  • This paper presents the results of design case study on soil-reinforced segmental retaining walls in tiered configuration. Six different field walls were examined to investigate the appropriateness of their designs within the context of the current design guidelines based on limit equilibrium. Slope stability analysis against the compound failure mode, which is frequently ignored during design, was additionally performed based on the method recommended by FHWA design guidelines. The results indicate that the as-built designs of some of the walls examined do not meet the minimum factors of safety for the external and Internal stabilities, and for the compound failure mode. The implications of the findings from this study are discussed.

Geosynthetic-Reinforced Segmental Retaining Walls in Tiered Arrangement - Case Study and Field Trial Wall Instrumentation (다단식 보강토 옹벽의 설계 - 사례연구 및 시험시공)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.27-36
    • /
    • 2004
  • This paper presents the results of stability analyses on soil-reinforced segmental retaining walls in a tiered arrangement. Four different walls were examined to investigate the appropriateness of their designs within the context of the current design guidelines based on limit equilibrium. Slope stability analysis against the compound failure mode, which is frequently ignored during design, was also performed based on the method recommended by FHWA design guidelines. Also presented are the results of instrumentation on a full-scale field trial wall constructed as part of this study. The implications of the findings from this study are discussed.

  • PDF

Case Study on Global Slope Failure Case of Segmental Retaining Wall (블록식보강토옹벽의 전면 사면붕괴 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 2005
  • Recently, geosynthetic reinforced earth walls are gradually replacing conventional concrete retaining walls for reasons of economy, expediency of construction, and aesthetics. A number of reinforced soil walls having more than 10m heights have been constructed to make more effective development in the country. However, mistakes in design and construction of reinforced earth walls have resulted in many troubles such as failure of reinforced earth walls, horizontal deformationor breakdown of facings, and so forth during or after construction. In this paper, a case study on global sliding failure of a geogrid-reinforced tiered wall is carried out to investigate the causes of the failure and suggest the proper countermeasures. From the subsurface investigation and field instrumentation, It is found that the cause of the global sliding failure was occurred by decreasing of bearing capacity of foundation ground induced by infiltration of rainwater.

  • PDF

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Reliability analysis of external and internal stability of reinforced soil under static and seismic loads

  • Ahmadi, Rebin;Jahromi, Saeed Ghaffarpour;Shabakhty, Naser
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • In this study, the reliability analysis of internal and external stabilities of Reinforced Soil Walls (RSWs) under static and seismic loads are investigated so that it can help the geotechnical engineers to perform the design more realistically. The effect of various variables such as angle of internal soil friction, soil specific gravity, tensile strength of the reinforcements, base friction, surcharge load and finally horizontal earthquake acceleration are examined assuming the variables uncertainties. Also, the correlation coefficient impact between variables, sensitivity analysis, mean change, coefficient of variation and type of probability distribution function were evaluated. In this research, external stability (sliding, overturning and bearing capacity) and internal stability (tensile rupture and pull out) in both static and seismic conditions were investigated. Results of this study indicated sliding as the predominant failure mode in the external stability and reinforcing rupture in the internal stability. First-Order Reliability Method (FORM) are applied to estimate the reliability index (or failure probability) and results are validated using the Monte Carlo Simulation (MCS) method. The results showed among all variables, the internal friction angle and horizontal earthquake acceleration have dominant impact on the both reinforced soil wall internal and external stabilities limit states. Also, the type of probability distribution function affects the reliability index significantly and coefficient of variation of internal friction angle has the greatest influence in the static and seismic limits states compared to the other variables.

A Case Study of Hybrid Reinforced Geo-Structure using Reinforced Concrete Block and Slope (콘크리트 블록식 보강토 옹벽과 보강사면을 복합으로 이용한 보강토의 설계 및 시공사례 연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.4
    • /
    • pp.47-56
    • /
    • 2005
  • With the need of efficient site use retaining walls have frequently used. Of them dry cast modular block wall(MBW), in which geogrid and concrete block are used is getting popular because of its simplicity and economical efficiency of construction. However, since this method is based on the theory of earth pressure, sands with good quality should be used. In contrast, reinforced soil slope(RSS) that the slope is less than $70^{\circ}$ can use wider range of soil than MBW. A hybrid reinforced geo-structure might be a good alternative in view of overcoming difficulty obtaining soils with good quality as well as maximizing the efficiency of site use. This method is composed of reinforced block wall and reinforced soil slope. In this method, reinforced block wall is constructed up to a certain height vertically at ground boundary first. Reinforced soil slope is then constructed on the block wall subsequently. This paper introduces several technical points that should be taken into account in design and construction.

  • PDF

A Case Study on the Restoration of Collapsed Geosynthetics Reinforced Soil Wall Using Limit Equilibrium and Numerical Analyses (한계평형해석과 수치해석에 의한 붕괴된 보강토 옹벽 복구 사례에 관한 연구)

  • Won, Myoung-Soo;Kim, Hyeong-Joo;Kim, Young-Shin;Choi, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.107-118
    • /
    • 2013
  • Geosynthetic reinforced soil (GRS) walls have been increasingly applied recently due to its numerous geotechnical engineering applications. However failure occurs in some cases of constructed GRS walls. These GRS wall failures are mostly due to the unpredictable characteristics of intensive rainfall. Hence, the need for new and innovative ideas for rehabilitation methods has been getting attention. This paper introduces a case study for the design and restoration method of collapsed GRS wall using Limit equilibrium and Numerical Analyses. Restoration method includes: (1) soil nailing without backfill excavation and (2) reconstruction with GRS wall after collapsed backfill excavation. Analyses results show minimal horizontal displacements and shear strain on the reinforced concrete facing for the restoration case with soil nailing. On the other hand, horizontal displacements are developed in the middle of the mortar block facing and shear strains are developed at the bottom facing with spiral curves for the reconstructed GRS wall after collapsed backfill excavation. Therefore, the collapsed GRS wall was restored with the soil nailing without backfill excavation and its construction procedures are discussed in this paper.

Stability Analysis and Design of Reinforced Masonry Walls (보강석축의 안정해석 및 설계)

  • Kim, Hong Taek;Kang, In Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.239-253
    • /
    • 1992
  • The masonry walls, having the characters of cheap construction materials and relatively easy construction, have been widely used in supporting slopes. However, the necessity of reinforcing methods to improve the stability of masonry walls has been continuously required due to the collapses taken place quite often. In the present study, a new method to improve the stability of masonry walls was developed based on the soil nailing system proven effective in strengthening the surrounding soils. The developed method could be used in reinforcing the old masonry walls structually unsafe as well as in constructing new masonry walls. The effects of pore water pressures due to heavy rainfalls were included in the developed method and also the chart practically applicable to design was presented, together with a design example.

  • PDF

Development of Short-fiber Composite Reinforced Retaining Wall for Railroad Soil Structure (노반 토구조물로서의 이용을 위한 새로운 단섬유 복합보강토 옹벽구조 개발)

  • Park Young-Kon;Park Tae-Soon;Chang Pyoung-Wuck;Lee Young-Je
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1014-1019
    • /
    • 2004
  • The development of both economical and consistent structure is strongly required for the whole reorganization of the railway network in Korea. Retaining wall is one of the major structures in the vicinity of the railway, which needs improving its external appearance and stability. Therefore, this study presents a new type of retaining wall, so called short-fiber composite reinforced retaining wall, as an alternative of retaining walls, which can be used for constructing the slope and roadbed soil structures. The results from real-scale test and dynamic numerical analysis for developed new one, which helps both the improvement of the external appearance and also the optimum use of the limited space near the railway, show excellent performance. On the basis of these results, it is judged that short-fiber composite reinforced retaining wall has the advantages of choosing the front wall freely and having a chance to use any low quality soil as backfill.

  • PDF