• Title/Summary/Keyword: reinforced concrete work

Search Result 438, Processing Time 0.026 seconds

Experiments on reinforced concrete beam-column joints under cyclic loads and evaluating their response by nonlinear static pushover analysis

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, Rolf;Vaze, K.K.;Ghosh, A.K.;Kushwaha, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.99-117
    • /
    • 2010
  • Beam-column joints are the key structural elements, which dictate the behavior of structures subjected to earthquake loading. Though large experimental work has been conducted in the past, still various issues regarding the post-yield behavior, ductility and failure modes of the joints make it a highly important research topic. This paper presents experimental results obtained for eight beam-column joints of different sizes and configuration under cyclic loads along with the analytical evaluation of their response using a simple and effective analytical procedure based on nonlinear static pushover analysis. It is shown that even the simplified analysis can predict, to a good extent, the behavior of the joints by giving the important information on both strength and ductility of the joints and can even be used for prediction of failure modes. The results for four interior and four exterior joints are presented. One confined and one unconfined joint for each configuration were tested and analyzed. The experimental and analytical results are presented in the form of load-deflection. Analytical plots are compared with envelope of experimentally obtained hysteretic loops for the joints. The behavior of various joints under cyclic loads is carefully examined and presented. It is also shown that the procedure described can be effectively utilized to analytically gather the information on behavior of joints.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Seismic retrofitting by base-isolation of r.c. framed buildings exposed to different fire scenarios

  • Mazza, Fabio;Mazza, Mirko
    • Earthquakes and Structures
    • /
    • v.13 no.3
    • /
    • pp.267-277
    • /
    • 2017
  • Base-isolation is now being adopted as a retrofitting strategy to improve seismic behaviour of reinforced concrete (r.c.) framed structures subjected to far-fault earthquakes. However, the increase in deformability of a base-isolated framed building may lead to amplification in the structural response under the long-duration horizontal pulses of high-magnitude near-fault earthquakes, which can become critical once the strength level of a fire-weakened r.c. superstructure is reduced. The aim of the present work is to investigate the nonlinear seismic response of fire-damaged r.c. framed structures retrofitted by base-isolation. For this purpose, a five-storey r.c. framed building primarily designed (as fixed-base) in compliance with a former Italian seismic code for a medium-risk zone, is to be retrofitted by the insertion of elastomeric bearings to meet the requirements of the current Italian code in a high-risk seismic zone. The nonlinear seismic response of the original (fixed-base) and retrofitted (base-isolated) test structures in a no fire situation are compared with those in the event of fire in the superstructure, where parametric temperature-time curves are defined at the first level, the first two and the upper levels. A lumped plasticity model describes the inelastic behaviour of the fire-damaged r.c. frame members, while a nonlinear force-displacement law is adopted for the elastomeric bearings. The average root-mean-square deviation of the observed spectrum from the target design spectrum together with a suitable intensity measure are chosen to select and scale near- and far-fault earthquakes on the basis of the design hypotheses adopted.

Knowledge Acquisition and Application for Scheduling Expert System of Highrise Buildings (HRB Expert 구축을 위한 지식의 획득과 활용)

  • Hong Young-Tak;Yu Jung-Ho;Lim Gyeong-Ho;Lee Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.2 s.24
    • /
    • pp.92-101
    • /
    • 2005
  • The duration of highrise building projects is more shorter than its increasing of the numbers of floors. The project is liable to overrun of the time in which the project must be complete. AS highrise buildings are increased, time management has been reorganized as critical success factor. To improve time management, time management softwares are introduced and the software's education is made lively in construction company. However a large amount of time management works still have been based on not the software but scheduler's experience. We often can find the time overrun risk of highrise building because of the shortage of scheduler's experience. To diminish the mistake of the scheduler who does not have much experience, we suggested HRB Expert which uses expert's knowledge to make the time plan of highrise building. We made an example of knowledge acquiring and knowledge usage which cased on reinforced concrete work of highrise building by literature review and interview with scheduling expert. The precision of time plan will be enhanced and time overrun will be prevented on condition that HRB Expert is constructed and used

Evaluation of Seismic Performances on Prestressed Composite Coupling Beams with Discontinuous Webs (불연속웨브가 도입된 프리스트레스트 합성연결보에 대한 내진성능 평가)

  • Oh, Jae Yuel;Lee, Deuck Hang;Choi, Seung Ho;Kim, Kang Su;Yi, Seong Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.133-142
    • /
    • 2013
  • The shear wall system with coupling beams has been known as an effective means for moderate and high rise buildings up to 40 stories, because this structural system can provide the enhanced lateral stiffness compared to individual shear walls. Typical reinforced concrete coupling beams have difficulties in construction due to complicated reinforcing work on site, and steel coupling beams also have disadvantages in economical point of view because of a large number of stiffeners required for its stability under lateral loading. To overcome these disadvantages in existing coupling beam systems, this study developed the prestressed composite coupling beam with discontinuous webs, which have improved constructability, economic feasibility, and reduced sectional size. The reversed cyclic loading test on two prestressed composite coupling beams with discontinuous webs having different shear reinforcement ratios have been conducted to investigate their structural performances, and test results showed that the proposed composite coupling beams had good seismic performances.

A Study on the Evaluation of Design Compressive Strength and Flexural Strength of the Improved Deep Corrugated Steel Plate (성능 개선된 대골형 파형강판의 설계 압축 및 휨 강도 평가에 대한 연구)

  • Sim, Jong Sung;Lee, Hyeon Gi;Kang, Tae Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • The structures that use the bridge plates are considered to have advantages such as short work term, excellent economical efficiency and low maintenance cost. Bridge plates are being widely used for water ducts and eco-corridors as replacements of reinforced concrete ducts. Bridge plates are deep and have greater pitch as compare to conventionally deep corrugated steel plate. They are expected to be increasingly used in the future. The structures that use bridge plates have two forms, such as arch type and box type. The arch type structures are designed based on the compressive strength, and the box type structures, based on the moment in the plate member. In this study, the ultimate strength and moment strength of the connection part of the specimens were examined by their thickness. Static and bending tests used to evaluate the performance of bridge plate. Finally, These results were used in the design process.

Probabilistic Analysis of Repairing Cost Considering Random Variables of Durability Design Parameters for Chloride Attack (염해-내구성 설계 변수에 변동성에 따른 확률론적 보수비용 산정 분석)

  • Lee, Han-Seung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • Repairing timing and the extended service life with repairing are very important for cost estimation during operation. Conventionally used model for repair cost shows a step-shaped cost elevation without consideration of variability of extended service life due to repairing. In the work, RC(Reinforced Concrete) Column is considered for probabilistic evaluation of repairing number and cost. Two mix proportions are prepared and chloride behavior is evaluated with quantitative exterior conditions. The repairing frequency and cost are investigated with varying service life and the extended service life with repairing which were derived from the chloride behavior analysis. The effect of COV(Coefficient of Variation) on repairing frequency is small but the 1st repairing timing is shown to be major parameter. The probabilistic model for repairing cost is capable of reducing the number of repairing with changing the intended service life unlike deterministic model of repairing cost since it can provide continuous repair cost with time.

Service Life Evaluation Considering Height of RC Structures and Distance from Sea Shore (RC 구조물 높이와 해안가 거리를 고려한 염해에 대한 내구수명 평가)

  • Oh, Kyeong-Seok;Kim, Young-Joon;Lee, Seong-Hee;Kwon, Sung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.172-179
    • /
    • 2016
  • For an evaluation of service life in RC(Reinforced Concrete) structures, deterministic method and probabilistic method considering random variables of design parameters are usually adopted. In the work, surface chloride contents which vary with distance from sea shore and height are investigated from the previous research literature surveys, and they are considered for service life estimation. Through the analysis, the probabilistic method shows much lower results, which is due to variations of design parameters and very low intended durability failure. In the deterministic method, the structures within 250m and higher than 60m are evaluated to be free from chloride attack. In the probabilistic method, those higher than 60m in all the region and higher than 40m and 250m from sea shore are evaluated to satisfy the service life.

A Study on the Change of Non-Working Days Based on the Rainfall in Incheon Area Using the Climate Change Scenarios (기후변화 시나리오를 활용한 인천지역 강우에 의한 작업불능일 변화 연구)

  • Jang, Junyoung;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.1
    • /
    • pp.103-113
    • /
    • 2018
  • In this study, Construction work is mainly done outdoors, so earth works, reinforced concrete works, etc. are Non-Working Days to rainfall. In particular, changes in rainfall due to global warming have made air calculation more difficult. Therefore, when establishing the process plan, the change of the rainfall in the area should be identified and Non-Working Days should be calculated. In this study, the time of rainfall change point was identified using the meteorological 'observation' data from 1960 to 2016 in Incheon and RCP 4.5, 'weather forecast' data from 2018 to 2074, Year rainfall and seasonal rainfall. The results showed that rainfall changed point in 1972, 1988, 2013, 2038, 2050 and 2069. In particular, it has been found that non-working days due to rainfall has big changed point as of 2013, 2038 and 2069.

3-D Configuration Effects of Prestressing Cable Bracing Used for Retrofitting a RC Frame Subjected to Seismic Damage (RC 골조의 내진 보강을 위한 예압 가새의 3-D 배치)

  • Lee, Jin-Ho;Oh, Sang-Gyun;Hisham, El-Ganzori
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.183-191
    • /
    • 2003
  • A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is upgraded with prestressing cable bracing. The purpose of this study is to investigate the bracing configuration effects on the 3-D building response using thee different locations of the bracing systems for the retrofitted building. Since the previous work done by the author proved that static incremental loads to collapse analysis as a substitute to dynamic non-linear time history analysis was a valid alternative tool. Thus, static load to collapse analysis is solely applied to evaluate the seismic performance parameters of both the original and upgraded buildings in this study. In results, the exterior bracing system is effective in restraining torsional behavior of the structure under seismic loads, and no sudden failure occurs in this system that enhances the ductility of the building due to the gradual change of building stiffness as the lateral load increases.