• Title/Summary/Keyword: reinforced concrete structures

Search Result 2,873, Processing Time 0.03 seconds

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

A numerical study of pillar reinforcing effect in underground cavern underneath existing structures (지하공간하부 지하저류공동에서의 필라 보강효과에 관한 수치해석적 연구)

  • Seo, Hyung-Joon;Lee, Kang-Hyun;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.453-467
    • /
    • 2012
  • Usage of underground space is increasing at metropolitan city. More than 90% of flood damages have occurred at downtown of metropolitan cities. In order to prevent and/or minimize the flood-induced damage, an underground rainwater detention cavern was proposed to be built underneath existing structures. As for underground caverns to be built for flood control, multi-caverns will be mostly adopted rather than one giant cavern because of stability problem. Because of the stress concentration occurring in the pillars between two adjacent caverns, the pillar-stability is the Achilles' heel in multi-caverns. So, a new pillar-reinforcing technology was proposed in this paper for securing the pillar-stability. In the new pillar-reinforcing technology, reinforced materials which are composed of a steel bar and PC strands are used by applying pressurized grouting, and then, by applying the pre-stress to the PC strands and anchor body. Therefore, this new technology has an advantage of utilizing most of the strength that the in-situ ground can exert, and not much relying on the pre-cast concrete structure. The main effect of the pressurized grouting is the increase of the ground strength and more importantly the decrease of stress concentration in the pillar; that of the pre-stress is the increase of the ground strength due to the increase of the internal pressure. In this paper, ground reinforcing effects were verified the stress change in pillar is obtained by numerical analysis at each construction stage. From these results, the effects of pressurized grouting and pre-stress are verified.

Structural Behavior of Steel Wire Truss Deck with Continuous Lattices to the Longitudinal Direction (길이방향으로 연속된 래티스를 가지는 철선 트러스데크의 구조 거동)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan;Cho, Soon Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • A truss deck system that has replaced the slab form conventional method has become widely used in the construction of reinforced concrete structures as well as steel structures. The current commercial products, however, have some problems. The discontinuity between the lattice wires on the joint of the bottom wire induces vierendeel behavior, which increases the deflection of the system. In this research, a new truss deck system with continuous lattice wires on the level of the bottom wire was developed to reduce the system's vierendeel behavior and to improve its deformation capacity. To investigate the system's structural behavior, an experimental test and an analysis were performed. The main parameters of the test and analysis were the longitudinal shape and spacing of the lattices. To simulate the loading condition in the construction field, uniform construction loads were directly applied on the deck plates of the analysis model and the test specimens. The results of such analysis and test revealed that the longitudinal shape of the lattice wires is a major factor affecting the structural behavior of a steel wire truss deck. Thus, continuous lattice wires could result in decreased vierendeel behavior in the steel wire truss deck. It was also found that the truss deck system with lattices spaced longer than in the conventional products could be effectively used without increasing the member stresses.

The Evaluation Applying Limit State Method for the Concrete Retaining Wall Structures (콘크리트 옹벽구조물의 한계상태설계법 적용성 평가)

  • Yang, Taeseon;Jeong, Jongki;Seo, Junhee;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.7
    • /
    • pp.59-66
    • /
    • 2014
  • Nowadays, some studies are performed in order to introduce the Limit State Design method widely used in foreign work sites. LRFD (Load Resistance Factor Design) method is widely used in the fields in which the data accumulation is possible - such as deep foundations, and shallow foundations, etc. The limit state design in the retaining walls is insufficient in the country owing to difficulties applying load tests. The limit state design method for retaining wall structures are studied based upon the National Retaining wall Design Standard legislated in 2008 by Ministry of Land, Transport, and Maritime Affairs. In this paper several retaining walls were calculated according to LRFD design criteria analysis using the general program with limit state design method and the factor of safety for sliding and overturning. Comparing with their results, the Taylor's series simple reliability analysis was performed. In the analysis results of retaining wall section, safety factors calculated by LRFD were found to be lowered than those calculated in current WSD, and it is possibly judged to be economic design by changing wall dimensions. In the future, pre-assessment of the geotechnical data for ensuring the reliability and the studies including reinforced retaining walls with ground anchor are needed.

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

Efficient Floor Vibration Analysis in A Shear Wall Building Structure (벽식구조물의 효율적인 연직진동해석)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.55-66
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system, composed of only reinforced concrete walls and slabs, have been constructed. In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore, an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time. If all of the DOFs except those perpendicular to walls or slabs in the shear wall structure eliminated using the matrix condensation technique at a time, the computational time for the matrix condensation would be significant. Thus, the modeling technique using super elements and substructuring technique is proposed to reduce the computational time for the matrix condensation. Dynamic analysis of 3-story and 5-story shear wall example structures were performed to verify the efficiency and accuracy of the proposed method. It was confirmed that the proposed method can provide the results with outstanding accuracy requiring significantly reduced computational time and memory.

Development of 3-Dimensional Rebar Detail Design and Placing Drawing System (3차원 배근설계 및 배근시공도 작성 자동화 시스템 개발)

  • Choi, Hyun-Chul;Lee, Yunjae;Lee, Si Eun;Kim, Chee Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.289-296
    • /
    • 2014
  • The rebar detailing is an important work influencing the final performance and quality of RC structures. But it is one of the most irrational and illogical activity in construction site. Many groups of workers, including main contractors, structural engineers, shop drawers, rebar fabricators, and etc., participate in this activity. A loosely-organized process for this activity is apt to produce a big amount of rebar loss or even degraded structures. A 3-dimensional rebar auto-placing system, called as Rebar Hub, has been designed and implemented in this research. Rebar Hub provides a totally integrated service from 3D structural modeling of buildings to rebar auto-placing considering anchorage, splice, and the length of ordered rebar. In addition, Rebar Hub can recognize the 2D drawing CAD files and then build 3D structural models which are used for the start point of 3D rebar auto-placing. After rebar auto-placing, each members of the 3D structural model have rebar information belonging to them. It means that the rebar information can be used for the afterward works such as quantity-survey, manufacturing and fabrication of rebars. Rebar Hub is showing outstanding performance while applying to practical projects. It has almost five times productivity and reduces the rebar loss up to 3~8% of the initially-surveyed amount of rebar.

Time Dependent Evaluation of Corrosion Free Life of Concrete Tunnel Structures Based on the Reliability Theory (해저 콘크리트 구조물의 신뢰성 이론에 의한 시간 의존적 내구수명 평가)

  • Pack, Seung Woo;Jung, Min Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.142-154
    • /
    • 2011
  • This study predicted the probability of corrosion initiation of reinforced concrete tunnel boxes structures using the Monte Carlo Simulation. For the inner wall and outer wall in the tunnel boxes, exposed to airborne chloride ion and seawater directly respectively, statistical values of parameters like diffusion coefficient D, surface chloride content $C_s$, cover depth c, and the chloride threshold level $C_{lim}$ were examined from experiment or literature review. Their average values accounted for $3.77{\times}10^{-12}m^2/s$, 3.0% by weight of cement, 94.7mm and 45.5mm for outer wall and inner wall, respectively, and 0.69% by weight of cement for D, $C_s$, c, and $C_{lim}$, respectively. With these parametric values, the distribution of chloride contents at rebar with time and the probability of corrosion initiation of the tunnel boxes, inner wall and outer wall, was examined by considering time dependency of chloride transport. From the examination, the histogram of chloride contents at rebar is closer to a gamma distribution, and the mean value increases with time, while the coefficient of variance decreases with time. It was found that the probability of corrosion initiation and the time to corrosion were dependent on the time dependency of chloride transport. Time independent model predicted time to corrosion initiation of inner wall and outer wall as 8 and 12 years, respectively, while 178 and 283 years of time to corrosion was calculated by time dependent model for inner wall and outer wall, respectively. For time independent model, the probability of corrosion at 100 years of exposure for inner wall and outer wall was ranged 59.5 and 95.5%, respectively, while time dependent model indicated 2.9 and 0.2% of the probability corrosion, respectively. Finally, impact of $C_{lim}$, including values specified in current codes, on the probability of corrosion initiation and corrosion free life is discussed.

Applicability of Partial Post-Tension Method for Deflection Control of Reinforced Concrete Slabs (RC슬래브의 처짐제어를 위한 상향긴장식 부분PT공법의 적용)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Sang-Sik;Kim, Yong-Nam;Lim, Joo-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.347-358
    • /
    • 2009
  • Recently, it is getting into a good situation for the flat-plate slab system to be applied. The flat-plate slab without beam, however, is often too weak to control deflection properly compared to other typical slab-beam structures, for which the post-tension method is generally regarded as one of best solutions. The post-tension (PT) method can effectively control deflection without increase of slab thickness. Despite this good advantage, however, the application of PT method has been very limited due to cost increase, technical problems, and lack of experiences. Therefore, in order to reduce difficulties on applying full PT method under the current domestic circumstances and to enhance constructability of PT system, this research proposed the partial PT method with top jacking anchorage applied in a part of span as need. For the top jacking anchorage system, the efficiency of deflection control shall be considered in detail because it can vary widely depending on the location of anchorage that can be placed anywhere as need, and tensile stresses induced at back of the anchorage zone also shall be examined. Therefore, in this study, analysis were performed on the efficiency of deflection control depending on the location of anchorage and on tensile stresses or forces using finite element method and strut and tie model in the proposed top jacking anchorage system. The proposed jacking system were also applied to the floor slabs at a construction site to investigate its applicability and the analysis results of slab behavior were compared to the measured values obtained from the PT slab constructed by the partial PT method. The result of this study indicates that the partial PT method can be very efficiently applied with little cost increase to control deflection and tensile stresses in the region as a need basis where problem exists.