• Title/Summary/Keyword: reinforced concrete flexural members

Search Result 286, Processing Time 0.026 seconds

Analytical Study of Reinforced Concrete Beams Strengthened with Fiber Reinforced Plastic Laminates (적층판으로 보강된 철근콘크리트보에 대한 해석적 연구)

  • Chae, Seoung-Hun;Kang, Joo-Won
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.206-211
    • /
    • 2004
  • This paper deals with the flexural strengthening of reinforced concrete beams by means of thin fiber reinforced plastic(FRP) laminas. This study focuses on modeling of structural of concrete bonded FRP laminate in flexural bending members. Used computational equation is derived by relation of stress and strain. The section analysis is based on experimental observations of a linear strain distribution in the cross section until failure, and a multi-linear moment-deflection curve that is divided into four regions, each terminated by a similarly numbered point. The load-deflection relationship in each region is assumed to be linear. The present model is validated to compare wit the experiment of 4-point bending tests of R/C rectangular beams strengthened with CFRP laminates, and has well predicted the moment-displacement relationships of members.

  • PDF

An Experimental Study on the Evaluation of Effective Flexural Rigidity in Reinforced Concrete Members (철근콘크리트 부재의 유효 휨강성 평가를 위한 실험적 연구)

  • Kim Sang Sik;Lee Jin Seop;Lee Seung Bae;Jang Su Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.131-134
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

  • PDF

Experimental study on flexural behavior of splicing concrete-filled GFRP tubular composite members connected with steel bars

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1129-1144
    • /
    • 2015
  • Based on the experiment, this paper focuses on studying flexural behavior of splicing concrete-filled glass fiber reinforced polymer (GFRP) tubular composite members connected with steel bars. The test results indicated the confinement effects of GFRP tubes on the concrete core in compression zone began to produce, when the load reached about $50%P_u$ ($P_u$-ultimate load), but the confinement effects in tensile zone was unobvious. In addition, the failure modes of composite members were influenced by the steel ratio of the joint. For splicing unreinforced composite members, the steel ratio more than 1.96% could satisfy the splicing requirements and the steel ratio 2.94% was ideal comparatively. For splicing reinforced specimen, the bearing capacity of specimen with 3.92% steel ratio was higher 21.4% than specimen with 2.94% steel ratio and the latter was higher 21.2% than the contrast non-splicing specimen, which indicated that the steel ratio more than 2.94% could satisfy the splicing requirements and both splicing ways used in the experiment were feasible. So, the optimal steel ratio 2.94% was suggested economically. The experimental results also indicated that the carrying capacity and ductility of splicing concrete-filled GFRP tubular composite members could be improved by setting internal longitudinal rebars.

Flexural/shear strength of RC beams with longitudinal FRP bars An analytical approach

  • Kosmidou, Parthena-Maria K.;Chalioris, Constantin E.;Karayannis, Chris G.
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.573-592
    • /
    • 2018
  • An analytical methodology for the calculation of the flexural and the shear capacity of concrete members with Fibre-Reinforced-Polymer (FRP) bars as tensional reinforcement is proposed. The flexural analysis is initially based on the design provisions of ACI 440.1R-15 which have properly been modified to develop general charts that simplify computations and provide hand calculations. The specially developed charts include non-dimensional variables and can easily be applied in sections with various geometrical properties, concrete grade and FRP properties. The proposed shear model combines three theoretical considerations to facilitate calculations. A unified flexural/shear approach is developed in flow chart which can be used to estimate the ultimate strength and the expected failure mode of a concrete beam reinforced with longitudinal FRP bars, with or without transverse reinforcement. The proposed methodology is verified using existing experimental data of 138 beams from the literature, and it predicts the load-bearing capacity and the failure mode with satisfactory accuracy.

Displacement-based seismic design of reinforced concrete columns strengthened by FRP jackets using a nonlinear flexural model

  • Cho, Chang-Geun;Yun, Hee-Cheon;Kim, Yun-Yong
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.95-108
    • /
    • 2009
  • In the current research, a displacement-based seismic design scheme to retrofit reinforced concrete columns using FRP composite materials has been proposed. An accurate prediction for the nonlinear flexural analysis of FRP jacketed concrete members has been presented under multiaxial constitutive laws of concrete and composite materials. Through modification of the displacement coefficient method (DCM) and the direct displacement-based design method (DDM) of reinforced concrete structures, two algorithms for a performance-based seismic retrofit design of reinforced concrete columns with a FRP jacket have been newly introduced. From applications to retrofit design it is known that two methods are easy to apply in retrofit design and the DCM procedure underestimates the target displacement to compare with the DDM procedure.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

Study on behavior of RCC beams with externally bonded FRP members in flexure

  • Sumathi, A.;Arun Vignesh, S.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.625-638
    • /
    • 2017
  • The flexural behavior of Fiber reinforced polymer (FRP) sheets has gained much research interest in the flexural strengthening of reinforced concrete beams. The study on flexure includes various parameters like increase in strength of the member due to the externally bonded (EB) Fiber reinforced polymer, crack patterns, debonding of the fiber from the structure, scaling, convenience of using the fibers, cost effectiveness, etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an externally bonded FRP concrete beam. In the design of FRP-reinforced concrete structures, deflection control is as critical as much as flexural strength. A numerical model is created using Finite element (FEM) software and the results are compared with that of the experiment.

Interaction of magnetic water and polypropylene fiber on fresh and hardened properties of concrete

  • Ansari, Mokhtar;Safiey, Amir
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.307-318
    • /
    • 2021
  • Utilizing fibers is an effective way to avoid the brittle behavior of the conventional concrete and can enhance its ductility. In particular, propylene fibers can improve concrete properties, including energy absorption, physical and mechanical properties, controlling shrinkage cracks. The increase of fiber density leads to an increase of the overlapping surface of the fiber of concrete and, in turn, a decrease of cracks developed in the concrete. However, the workability of fiber reinforced concrete tends to be lower than the conventional concrete owing mainly to the hairline thickness and excessive concentration of fibers. The low slump of concrete impedes the construction of reinforced concrete members. In this research, we study if the utilization of magnetic water can alleviate the workability issue of young fiber reinforced concrete. To this end, the compressive and flexural strength of four types of concrete (conventional concrete, fiber reinforced concrete, magnetic concrete, magnetic fiber-reinforced concrete) is studied and compared at three different ages of 7, 14, and 28 days. In order to study the influence of the fiber density and length, a study on specimens with three different fiber density (1, 2, 5 kg of fiber in each cubic meter of concrete) and fiber length (6, 12, 18 mm) is undertaken. The result shows the magnetic fiber concrete can result in an increase of the flexural and compressive strength of concrete at higher ages.

On the Ductility of High-Strength Concrete Beams

  • Jang, Il-Young;Park, Hoon-Gyu;Kim, Sung-Soo;Kim, Jong-Hoe;Kim, Yong-Gon
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • Ductility is important in the design of reinforced concrete structures. In seismic design of reinforced concrete members, it is necessary to allow for relatively large ductility so that the seismic energy is absorbed to avoid shear failure or significant degradation of strength even after yielding of reinforcing steels in the concrete member occurs. Therefore, prediction of the ductility should be as accurate as possible. The principal aim of this paper is to present the basic data for the ductility evaluation of reinforced high-strength concrete beams. Accordingly, 23 flexural tests were conducted on full-scale structural concrete beam specimens having concrete compressive strength of 40, 60, and 70MPa. The test results were then reviewed in terms of flexural capacity and ductility. The effect of concrete compressive strength, web reinforcement ratio, tension steel ratio, and shear span to beam depth ratio on ductility were investigated experimentally.

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.