• Title/Summary/Keyword: reinforced bridge

Search Result 728, Processing Time 0.026 seconds

An Estimate of Flexural Strength for Reinforce Concrete Beams Strengthened with CFRP Sheets (탄소섬유쉬트에 의해 휨보강된 RC보의 휨강도 추정)

  • Park Jong-Sup;Jung Woo-Tai;You Young-Jun;Park Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.213-220
    • /
    • 2005
  • Carbon fiber reinforced polymer (CFRP) sheets are becoming increasingly popular for strengthening deteriorated concrete bridges due to their excellent strength and stiffness-to-weight ratio, corrosion resistance, and convenience of construction work. The purpose of this study is to compare the performance of CFRP-strengthened reinforced concrete (RC) beams and to develop a new design formula. Simple beams with 3 m span length were tested to investigate the effect of reinforcing steel ratio and CFRP-reinforcing ratio on the flexural behavior of strengthened RC beams. The test results were analyzed with the special emphasis on the failure mode, the maximum load, and the strain distribution in the section. It is shown that the strain of the strengthened beams is not linearly distributed in the section. A new design formula based on the non-linear distribution of the strain has been derived and showed that it has a good agreement with the various domestic and foreign test results.

A Case Study on Impact Factor of Bridge in Tunnels Subjected to Moving Vehicle Load (터널내 교량의 이동차량하중 작용시 충격계수에 대한 사례연구)

  • 김재민;이중건;이익효;이두화
    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 1999
  • This paper presents results of dynamic analysis for a bridge in intersection part of two tunnels subjected to moving vehicle load. Since such a bridge system is very unusual due to the fact that it is located in tunnel, the dynamic characteristics of the structure can not be assumed as conventional one. The structure investigated in this study it a reinforced concrete bridge in the intersection part of Namsan Tunnel-1 and Tunnel-2 in Seoul. It is supported by temporary steel structure which shall be constructed during the period of replacing lining in Tunnel-2. Dynamic analysis was carried out for the system using a finite element model constructed by general purpose FE program SAP2000. For this purpose, the structure, lining of tunnels, and surrounding rock were represented by finite elements, while the rock region it truncated and on its outer boundary viscous dampers were placed to simulate radiation of elastic waves generated tunnels. Several types of vehicle with various driving velocities were considered in this analysis. The FE model including vehicle loadings was verified by comparing calculated peak particle velocity with the measured one. From the analysis, the impart factor for the bridge was estimated as 0.21, which indicates that the use of upper bound for the impact factor in design code is reasonable for this kind of bridge system.

  • PDF

Experimental Study of Modular Bridge Deck Made of GFRP Composite Materials (GFRP 복합재료를 이용한 조립식 교량 바닥판의 실험 연구)

  • Jeong, Jin Woo;Kim, Young Bin;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.337-346
    • /
    • 2005
  • A composite bridge deck system assembled from a modular profile with double-rectangular cell has been developed for highway bridges. This study is focused on the experimental characterization of flexure performance of pultruded GFRP deck under static loading. Several tests were conducted on single modules and adhesively bonded 2 and 5-modules. The specimen details such as dimensions, material properties and fiber architecture, and experimental set-up and testing procedure have been addressed. It is found that the presented GFRP composite modular deck is very efficient for use in bridges.

Chloride penetration in anchorage concrete of suspension bridge during construction stage

  • Yang, In-Hwan;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Advances in concrete construction
    • /
    • v.10 no.1
    • /
    • pp.13-20
    • /
    • 2020
  • Steel corrosion in embedded steel causes a significant durability problems and this usually propagates to structural degradation. Large-scaled concrete structures, PSC (Pre-stressed Concrete) or RC (Reinforced Concrete) structures, are usually constructed with mass concrete and require quite a long construction period. When they are located near to sea shore, chloride ion penetrates into concrete through direct or indirect exposure to marine environment, and this leads durability problems. Even if the structures are sheltered from chloride ingress outside after construction, the chloride contents which have been penetrated into concrete during the long construction period are differently evaluated from the initially mixed chloride content. In the study, chloride profiles in cores extracted from anchorage concrete block in two large-scaled suspension bridge (K and P structure) are evaluated considering the exposure periods and conditions. Total 21 cores in tendon room and chamber room were obtained, and the acid-soluble chlorides and compressive strength were evaluated for the structures containing construction period around 3 years. The test results like diffusion coefficient and surface chloride content from the construction joint and cracked area were also discussed with the considerations for maintenance.

Seismic Capacity Evaluation of Bridge Structure using Capacity Spectrum Method (역량스펙트럼법에 의한 교량 구조물의 내진성능평가)

  • 박연수;오백만;박철웅;서병철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.67-73
    • /
    • 2003
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-based analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result. capacity spectrum method could realistically evaluate the non-elastic behavior of structures easily and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structure and a verification of design for capacity target of the new structure.

A Study on the Performance Test and Manufacture of the Dielectric Sensor for the Cure Monitoring of the High Temperature Composites (고온 복합재료의 경화 모니터링을 위한 고온 유전센서의 제작 및 성능평가에 관한 연구)

  • 김일영;최진호;이대길
    • Composites Research
    • /
    • v.14 no.1
    • /
    • pp.30-38
    • /
    • 2001
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the Wheatstone bridge type for measuring the dissipation factor during cure of thermsetting resin matrix composite materials was designed and manufactured. Also, the dielectric sensor for the cure monitoring of high temperature cure composites was developed and tested. The residual thermal stresses of the dielectric sensor during high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature cure were analyzed by the finite element method and its dielectric characteristics at high temperature were evaluated. The on-line cure monitoring of the BMI(Bismaleimide) resin was performed using the developed Wheatstone bridge type circuit and the high-temperature dielectric sensor.

  • PDF

Test Results and Nonlinear Analysis of RC T-beams Strengthened by Bonded Steel Plates

  • Ren, Wei;Sneed, Lesley H.;Gai, Yiting;Kang, Xin
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • This paper describes the test results and nonlinear analysis of reinforced concrete T-beams strengthened by bonded steel plates under increasing static loading conditions. The first part of this paper discusses the flexural tests on five T-beams, including the test model design (based on similarity principles), test programs, and test procedure. The second part discusses the nonlinear numerical analysis of the strengthened beams, in which a concrete damage plasticity model and a cohesive behavior were adopted. The numerical analysis results are compared with experimental data and show good agreement. The area of bonded steel plate and the anchor bolt spacing were found to have an impact on the cracking load, yield load, and ultimate load. An increase in the area of steel plate and a reduction of the anchor spacing could significantly improve the cracking and ultimate loads and decrease the damage of the beam.

A Basic Analysis of Behavior of Rectangular Prestressed Pilecolumn I (사각 프리스트레스트 말뚝형 기둥 기초적 특성 사례 연구 I)

  • Chon, Kyungsu;Kim, Nagyoung;Chung, Kyuchung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.12
    • /
    • pp.13-22
    • /
    • 2013
  • A substructure of bridges is very important structural element for safety and supporting not only vertical loads as dead load and live load but lateral loads as break load, wind load, seismic load, hydrostatic pressure and dynamic water pressure, lateral earth pressure, impulsive load, temperature change and load effect of temperature change, creep and shrinkage. Most of domestic bridges are reinforced concrete piers and have an effect on economy of bridge. Recently, understanding importance of substructure, we are getting more interested in new substructure system.

Behavior of Laterally Damaged Prestressed Concrete Bridge Girders Repaired with CFRP Laminates Under Static and Fatigue Loading

  • ElSafty, Adel;Graeff, Matthew K.;Fallaha, Sam
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.43-59
    • /
    • 2014
  • Many bridges are subject to lateral damage for their girders due to impact by over-height vehicles collision. In this study, the optimum configurations of carbon fiber reinforced polymers (CFRP) laminates were investigated to repair the laterally damaged prestressed concrete (PS) bridge girders. Experimental and analytical investigations were conducted to study the flexural behavior of 13 half-scale AASHTO type II PS girders under both static and fatigue loading. Lateral impact damage due to vehicle collision was simulated by sawing through the concrete of the bottom flange and slicing through one of the prestressing strands. The damaged concrete was repaired and CFRP systems (longitudinal soffit laminates and evenly spaced transverse U-wraps) were applied to restore the original flexural capacity and mitigate debonding of soffit CFRP longitudinal laminates. In addition to the static load tests for ten girders, three more girders were tested under fatigue loading cycles to investigate the behavior under simulated traffic conditions. Measurements of the applied load, the deflection at five different locations, strains along the cross-section height at mid-span, and multiple strains longitudinally along the bottom soffit were recorded. The study investigated and recommended the proper CFRP repair design in terms of the CFRP longitudinal layers and U-wrapping spacing to obtain flexural capacity improvement and desired failure modes for the repaired girders. Test results showed that with proper detailing, CFRP systems can be designed to restore the lost flexural capacity, sustain the fatigue load cycles, and maintain the desired failure mode.

Probabilistic-based prediction of lifetime performance of RC bridges subject to maintenance interventions

  • Tian, Hao;Li, Fangyuan
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.499-521
    • /
    • 2016
  • In this paper, a probabilistic- and finite element-based approach to evaluate and predict the lifetime performance of reinforced concrete (RC) bridges undergoing various maintenance actions is proposed with the time-variant system reliability being utilized as a performance indicator. Depending on their structural state during the degradation process, the classical maintenance actions for RC bridges are firstly categorized into four types: Preventive type I, Preventive type II, Strengthening and Replacement. Preventive type I is used to delay the onset of steel corrosion, Preventive type II can suppress the corrosion process of reinforcing steel, Strengthening is the application of various maintenance materials to improve the structural performance and Replacement is performed to restore the individual components or overall structure to their original conditions. The quantitative influence of these maintenance types on structural performance is investigated and the respective analysis modules are written and inputted into the computer program. Accordingly, the time-variant system reliability can be calculated by the use of Monte Carlo simulations and the updated the program. Finally, an existing RC continuous bridge located in Shanghai, China, is used as an illustrative example and the lifetime structural performance with and without each of the maintenance types are discussed. It is felt that the proposed approach can be applied to various RC bridges with different structural configurations, construction methods and environmental conditions.