• Title/Summary/Keyword: rehabilitation of bridges

Search Result 71, Processing Time 0.024 seconds

A Study on the Life Cycle Cost Analysis of Light Railroad Transit Bridges (경량전철 교량의 생애주기비용 분석에 관한 연구)

  • Lee, Du-Heon;Kim, Kyoon-Tai;An, Dong-Geun;Jun, Jin-Taek;Han, Choong-Hee
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.384-389
    • /
    • 2006
  • The needs for Light Railroad Transit(LRT) have been increased due to the heavy traffic congestions in large cities like Seoul, Korea. Korean government is seeking the LRT system development (including planning, designing, construction, and maintenance and operations) in terms of public-private-partnership (PPP). At the private sector side, it is crucial to estimate the life cycle cost (LCC) to project the cash flow during the O&M period. Since the most construction and O&M cost of LRT project is at the bridge construction, a cost analysis model and a cost breakdown structures (CBS) on LRT bridges are discussed through in depth literature reviews. Construction and maintenance cost of bridges are collected and analyzed. LCC is analyzed by types of bridge superstructures and historical data of repair and rehabilitation (R&R) is investigated. There have been scarce number of LCC analysis on railway bridges. This research delivers a well-defined CBS and maintenance cost data, which will be a great benefit to the systematic maintenance strategy development for railroad bridges.

  • PDF

Preliminary Analysis on Artificial Intelligence-based Methodology for Selecting Repair and Rehabilitation Methods of Bridges (인공지능 기반의 교량 보수공법 선정 기술 개발을 위한 선행 분석)

  • Kim, Jonghyeob;Jung, In-Su;Yun, Won-Gun;Kim, Jung-Yeol;Park, In-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.861-872
    • /
    • 2021
  • An efficient cost management is important for the domestic social overhead capital(SOC) based on a long lifecycle after 30 years since completion. Maintenance in South Korea have had the restrictions of consistency and suitability of decision-making by the establishment of a budget plan based on the company estimate and repair and reinforcement methods determined by the inspection and diagnosis engineers' subjective determination for each facility. To resolve this issue, the Korea Institute of Civil Engineering and Building Technology is currently in development of a methodology to propose an optimum maintenance method according to the damage of components by artificial intelligence. This study has deduced the primary factors by analyzing information generated during bridge maintenance and management as a prior step for the development of technologies, and conducted a preliminary analysis to select the optimum artificial intelligence technology.

Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.127-139
    • /
    • 2019
  • Bridges, offshore oil platforms and other infrastructures usually require at some point in their service life rehabilitation for reasons such as aging and corrosion. This study explores the application of adhesively bonded CFRP patches in repair of corroded circular hollow sectional (CHS) steel beams. An experimental program involving three-point bending tests was conducted on intact, corroded, and repaired CHS beams. Meso-scale finite element (FE) models of the tested beams were developed and validated by the experimental results. A parametric study using the validated FE models was performed to examine the effects of different CFRP patch parameters, including patch dimensions, number of plies and stacking sequence, on efficiency of the repair system. Results indicates that the corrosion reduced elastic stiffness and flexural strength of the undamaged beam by 8.9 and 15.1%, respectively, and composite repair recovered 10.7 and 18.9% of those, respectively, compared to undamaged beam. These findings demonstrated the ability of CFRP patch repair to restore full bending capacity of the corroded CHS steel beam. The parametric study revealed that strength and stiffness of the repaired CHS beam can be enhanced by changing the fiber orientations of wet composite patch without increasing the quantity of repair materials.

Experimental study on repair of corroded steel beam using CFRP

  • Chen, Meiling;Das, Sreekanta
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.103-118
    • /
    • 2009
  • It has been reported that more than thirty five percent of steel bridges in the USA are structurally deficient because of structural degradations. The degraded structures need either full replacement or rehabilitation such that they are able to provide the required services for a longer period of time. The cost for repair in most cases is far less than the cost of replacement. Moreover, repair method generally takes less time than replacement and also reduces service interruption time. Modern advanced composites have been used in aerospace and automotive fields since World War II. In the recent past, because of the high strength-to-weight ratio and high stiffness-to-weight ratio, these composite materials have been introduced to civil engineering infrastructures primarily for repair and rehabilitation of concrete structures. However, only a few preliminary studies on repair of corroded steel structures using theses composite materials are reported in the literature available in the public domain. Thus, in this study, a series of laboratory tests was undertaken to evaluate the effectiveness of this repair method using carbon fiber reinforced polymer composite. The paper discusses the test method and test results obtained from these tests.

Experimental study for Concrete-filled I-beam Grid Slab (I 형강 격자 상판에 대한 실험적 연구)

  • 박창규;석윤호;김철환;김용곤;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.458-463
    • /
    • 2000
  • Recently, there are increasing much concerns about repair and rehabilitation works for aged Concrete Structures which had been constructed on around the 1970's for rapid economic growth in Korea. In particular, it is believed that there are many aged concrete slabs for Highway bridges in these days. Thus new construction method of concrete slabs are strongly needed to minimize the traffic congestion during the repair works. The objective of this research is to develop the new constructional method of concrete slab in bridge structure, which can contribute to minimize the traffic congestion to be occurred during the repair and rehabilitation works of aged concrete slab, and can also assure the reliable quality through the minimization of in-situ works at the site. I-beams with punch holes will be manufactured in accordance with the specification in the factory, and will be preassembled into the panel. After erecting the preassembled panels in the site, concrete will be poured into the slab panel. This research is to investigate physical properties of I-Beam with punch holes itself, and then to investigate structural properties of assembled I-Beam panels through static and fatigue test, of which result can be utilized for the development of the new constructional method for concrete slab in bridge structure.

  • PDF

Optimal Life Cycle Cost Design of a Bridge (교량의 생애주기비용 최적설계)

  • Park, Jang-Ho;Shin, Yung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.115-122
    • /
    • 2010
  • The importance of the life cycle cost (LCC) analysis for bridges has been recognized over the last decade. However, it is difficult to predict LCC precisely since the costs occurring throughout the service life of the bridge depend on various parameters such as design, construction, maintenance, and environmental conditions. This paper presents a methodology for the optimal life cycle cost design of a bridge. Total LCC for the service life is calculated as the sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The optimization method is applied to design of a bridge structure with minimal cost, in which the objective function is set to LCC and constraints are formulated on the basis of Korean Bridge Design Code. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on damage probabilities to consider the uncertainty of load and resistance. Repair and rehabilitation cost is determined using load carrying capacity curves and user cost includes traffic operation costs and time delay costs. The optimal life cycle cost design of a bridge is performed and the effects of parameters are investigated.

The Behavior between Steel fiber Reinforced Concrete Both Simple and Continuous Beams (강섬유 보강 철근 콘크리트 단순보와 연속보의 거동)

  • 곽계환;김원태;김기순;장화섭
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.167-174
    • /
    • 2003
  • It is absolutely natural to be interested in durability and safety of the structure under shear behavior. To fulfill this desire, a comparison on the shear behavior between steel fiber reinforced concrete both simple and continuous beams is done to use in the field working. Several operations are conducted : First of all, plan for optimal combination is standardized. Second, resistance for shear has been generalized in that it is decided by combination of individual elements. Third, as the fracture of tensile bar leads to destruction of specimen, shear behavior of whole specimen is decided by stress working on tensile bar. It should be generalized for other specimens also. Forth, evidence of the softness of steel fiber reinforced concrete beam by experiment lead to application in the fields. Finally, numeral values of the steel fiber reinforced concrete are analyzed and the result is compared to those of experiments. With these consequences, this study was done for the application to dynamic structures such as bridges and the repair and rehabilitation.

  • PDF

Nonlinear analysis of connectors applied on concrete composite constructions

  • Winkler, B.;Bianchi, P.;Siemers, M.
    • Computers and Concrete
    • /
    • v.3 no.2_3
    • /
    • pp.91-102
    • /
    • 2006
  • To place concrete overlays has become a standard application in the strengthening and rehabilitation of concrete structures such as bridges, tunnels, parking decks and industrial buildings. In general, connectors are used to ensure a monolithic behavior of the two concrete layers. Within the framework of the development of a new connector wedge splitting tests and shear tests were performed, in addition nonlinear finite element analyses were applied to investigate the load transfer behavior of the connectors for different prototypes. The numerical simulation results were compared to experimental data. The computed load-displacement curve demonstrates good correspondence with the curves obtained in the experiments, and the experimental crack patterns are reasonably simulated by the computed crack propagation. Both numerical and experimental investigations on the wedge splitting test and on the shear test served as basis for the development of new type of connectors.

Quasi-Static Test for Seismic Performance of R/C Bridge Piers Retrofitted with Glassfibers (준정적실험에 의한 섬유보강된 철근콘크리트 교각의 내진성능 평가)

  • 이대형;이재형;정영수;박진영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.871-876
    • /
    • 2001
  • Recent earthquakes in California and Japan caused extensive damage to highway bridge structures. It is also thought that during probable earthquakes bridge structures in Korea could be failed due to the structural deficiencies, which were nonseismically designed and constructed before 1992. In these regards, innovative strengthening methods have been developed to repair reinforced concrete bridge columns, especially by glassfiber sheet bonding methods which are widely used today. The primary objective of this research is to investigate the seismic behavior of RC bridge columns retrofitted with composite straps and to propose pertinent guidelines of repair and rehabilitation method for earthquake resistant design procedure of RC bridges which are located in low or moderate seismicity regions. Six scaled-down concrete test specimens were made with test variables such as lap splice ratio, axial force ratio, confinement ratio, composite straps in the plastic hinge region. Pertinent design guidelines could be developed for the earthquake resistant design of RC bridge piers retrofitted with glassfibers in low or moderate seismic region.

  • PDF

Development of Approximate Cost Estimate Model for Aqueduct Bridges Restoration - Focusing on Comparison between Regression Analysis and Case-Based Reasoning - (수로교 개보수를 위한 개략공사비 산정 모델 개발 - 회귀분석과 사례기반추론의 비교를 중심으로 -)

  • Jeon, Geon Yeong;Cho, Jae Yong;Huh, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1693-1705
    • /
    • 2013
  • To restore old aqueduct in Korea which is a irrigation bridge to supply water in paddy field area, it is needed to estimate approximate costs of restoration because the basic design for estimation of construction costs is often ruled out in current system. In this paper, estimating models of construction costs were developed on the basis of performance data for restoration of RC aqueduct bridges since 2003. The regression analysis (RA) model and case-based reasoning (CBR) model for the estimation of construction costs were developed respectively. Error rate of simple RA model was lower than that of multiple RA model. CBR model using genetic algorithm (GA) has been applied in the estimation of construction costs. In the model three factors like attribute weight, attribute deviation and rank of case similarity were optimized. Especially, error rate of estimated construction costs decreased since limit ranges of the attribute weights were applied. The results showed that error rates between RA model and CBR models were inconsiderable statistically. It is expected that the proposed estimating method of approximate costs of aqueduct restoration will be utilized to support quick decision making in phased rehabilitation project.