• Title/Summary/Keyword: regulatory control

Search Result 777, Processing Time 0.028 seconds

인삼(Panax ginseng C.A. Meyer) Saponin 성분이 흰쥐의 장기에서 Polyamine 대사에 미치는 영향

  • 최연식;조영동
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.233-240
    • /
    • 1996
  • In order to study effects of Korean ginseng (Panax ginseng C.A. Meyer) saponin fraction on polyamine metabolism in rat organs, Korean ginseng saponin fraction was administrated to rats for 1, 2, 3, 4, 6 and 12 months and brain, liver, prostate, spleen and testis were removed from these rats. Two enzyme activities were measured from those organs; ornithine decarboxylase (ODC), which is a regulatory enzyme of putrescence biosynthesis and S-adenosylmethionine decarboxylase (SAMDC), which is also a regulatory enzyme of spermidine and spermine biosynthesis. The amounts of polyamine were also determined. As for prostate and testis organs, Korean ginseng saponin fraction was innocuous for ODC and SAMDC activities from rats fed for 1 and 2 months. However, after 3 months, the stimulatory effect on the activities of two enzyme gradually increased in test groups and reached its maximum in 12 months. The contents of spermidine and spermlne of test groups in prostate and testis were also much higher than those of control groups. Another stimulatory effect on the activities of two enzymes was observed in liver and reached its maximum in 6 months. In the other organs such as brain and spleen, the enzymes were turned out to be not affected by feeding Korean ginseng saponin fraction. From the cumulative results, the stimulatory effect of Korean ginseng saponin fraction on polyamine metabolism was observed in prostate, testis and liver.

  • PDF

The Screening Condition for the Immune Regulatory Responsor Using Mouse Fetal Thymic Organ Culture (쥐의 태아 흉선 조직 배양을 이용한 면역조절제 검색방법 확립)

  • Lee, Seung-Gak;Song, Min-Dong;Lee, Kwang-Ho
    • Korean Journal of Pharmacognosy
    • /
    • v.28 no.4
    • /
    • pp.286-292
    • /
    • 1997
  • We studied the screening condition for immune regulatory responsor. We focused on the T-lymphocytes leer this purpose. Mouse fetal thymic organ culture (FTOC) system and flow cytometric analysis were mainly used in this experiment. Even if FTOC is carried out in vivo condition, the pattern of thymic development in the condition of FTOC is similar to that of in vivo condition. In this regard, FTOC system might be very powerful tool to screen the immune regulator, especially concerning on T cells. To establish the optimum condition of FTOC to screen the Immune regulator, we focused on the optimum amount of dose and culture period. The cell number and surface antigens on T cells were also analysed by using hemacytometer and flow cytometer. To monitor the differentiation event, anti-CD3, anti-CD4 and anti-CD8 antibodies were used. Alkoxyglycerol and Phellodendri Cortex were used fur positive and negative control, respectively. Astragalus membranceus was used as test sample. From our analysis, we reached to conclusions that the best dose of extract is $50\;{\mu}g/ml$ of culture medium, the best culture period is for 9 days, and ethanol used as solvent has no toxicity to FTOC.

  • PDF

MiT Family Transcriptional Factors in Immune Cell Functions

  • Kim, Seongryong;Song, Hyun-Sup;Yu, Jihyun;Kim, You-Me
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.342-355
    • /
    • 2021
  • The microphthalmia-associated transcription factor family (MiT family) proteins are evolutionarily conserved transcription factors that perform many essential biological functions. In mammals, the MiT family consists of MITF (microphthalmia-associated transcription factor or melanocyte-inducing transcription factor), TFEB (transcription factor EB), TFE3 (transcription factor E3), and TFEC (transcription factor EC). These transcriptional factors belong to the basic helix-loop-helix-leucine zipper (bHLH-LZ) transcription factor family and bind the E-box DNA motifs in the promoter regions of target genes to enhance transcription. The best studied functions of MiT proteins include lysosome biogenesis and autophagy induction. In addition, they modulate cellular metabolism, mitochondria dynamics, and various stress responses. The control of nuclear localization via phosphorylation and dephosphorylation serves as the primary regulatory mechanism for MiT family proteins, and several kinases and phosphatases have been identified to directly determine the transcriptional activities of MiT proteins. In different immune cell types, each MiT family member is shown to play distinct or redundant roles and we expect that there is far more to learn about their functions and regulatory mechanisms in host defense and inflammatory responses.

Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation

  • Kim, Hyo Kyeong;Jeong, Mi Gyeong;Hwang, Eun Sook
    • Molecules and Cells
    • /
    • v.44 no.5
    • /
    • pp.318-327
    • /
    • 2021
  • CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naive Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein argininemodifying enzymes in effector Th cells.

Overexpression of indoleamine 2,3-dioxygenase correlates with regulatory T cell phenotype in acute myeloid leukemia patients with normal karyotype

  • Arandi, Nargess;Ramzi, Mani;Safaei, Fatemeh;Monabati, Ahmad
    • BLOOD RESEARCH
    • /
    • v.53 no.4
    • /
    • pp.294-298
    • /
    • 2018
  • Background Production of immunosuppressive enzymes such as indoleamine 2,3-dioxygenase (IDO) is one of the strategies employed by hematologic malignancies, including acute myeloid leukemia (AML), to circumvent immune surveillance. Moreover, IDO has the ability to convert $CD4^+CD25^-$ conventional T cells into regulatory T cells (Tregs). In this study, we evaluated the expression of IDO in cytogenetically normal acute myeloid leukemia (CN-AML) patients and its correlation with the Treg marker, FOXP3, as well as clinical and laboratory parameters. Methods Thirty-seven newly diagnosed CN-AML patients were enrolled in our study along with 22 healthy individuals. The expression of the IDO and FOXP3 genes was analyzed by SYBR Green real-time PCR. Results Both IDO and FOXP3 were highly upregulated in CN-AML patients compared to control groups (P=0.004 and P=0.031, respectively). A positive correlation was observed between IDO and FOXP3 expression among AML patients (r=0.512, P=0.001). Expression of IDO and FOXP3 showed no significant correlation with laboratory parameters such as white blood cell and platelet counts, hemoglobin levels, bone marrow blast percentage, gender, and FLT3 mutation status (P>0.05). Conclusion Higher IDO expression in CN-AML patients may be associated with an increased Treg phenotype which may promote disease progression and lead to poor prognosis of CN-AML patients.

Transcriptome Analysis and Expression Profiling of Molecular Responses to Cd Toxicity in Morchella spongiola

  • Xu, Hongyan;Xie, Zhanling;Jiang, Hongchen;Guo, Jing;Meng, Qing;Zhao, Yuan;Wang, Xiaofang
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.421-433
    • /
    • 2021
  • Morchella is a genus of fungi with the ability to concentrate Cd both in the fruit-body and mycelium. However, the molecular mechanisms conferring resistance to Cd stress in Morchella are unknown. Here, RNA-based transcriptomic sequencing was used to identify the genes and pathways involved in Cd tolerance in Morchella spongiola. 7444 differentially expressed genes (DEGs) were identified by cultivating M. spongiola in media containing 0.15, 0.90, or 1.50 mg/L Cd2+. The DEGs were divided into six sub-clusters based on their global expression profiles. GO enrichment analysis indicated that numerous DEGs were associated with catalytic activity, cell cycle control, and the ribosome. KEGG enrichment analysis showed that the main pathways under Cd stress were MAPK signaling, oxidative phosphorylation, pyruvate metabolism, and propanoate metabolism. In addition, several DEGs encoding ion transporters, enzymatic/non-enzymatic antioxidants, and transcription factors were identified. Based on these results, a preliminary gene regulatory network was firstly proposed to illustrate the molecular mechanisms of Cd detoxification in M. spongiola. These results provide valuable insights into the Cd tolerance mechanism of M. spongiola and constitute a robust foundation for further studies on detoxification mechanisms in macrofungi that could potentially lead to the development of new and improved fungal bioremediation strategies.

The Chromatin Accessibility Landscape of Nonalcoholic Fatty Liver Disease Progression

  • Kang, Byeonggeun;Kang, Byunghee;Roh, Tae-Young;Seong, Rho Hyun;Kim, Won
    • Molecules and Cells
    • /
    • v.45 no.5
    • /
    • pp.343-352
    • /
    • 2022
  • The advent of the assay for transposase-accessible chromatin using sequencing (ATAC-seq) has shown great potential as a leading method for analyzing the genome-wide profiling of chromatin accessibility. A comprehensive reference to the ATAC-seq dataset for disease progression is important for understanding the regulatory specificity caused by genetic or epigenetic changes. In this study, we present a genome-wide chromatin accessibility profile of 44 liver samples spanning the full histological spectrum of nonalcoholic fatty liver disease (NAFLD). We analyzed the ATAC-seq signal enrichment, fragment size distribution, and correlation coefficients according to the histological severity of NAFLD (healthy control vs steatosis vs fibrotic nonalcoholic steatohepatitis), demonstrating the high quality of the dataset. Consequently, 112,303 merged regions (genomic regions containing one or multiple overlapping peak regions) were identified. Additionally, we found differentially accessible regions (DARs) and performed transcription factor binding motif enrichment analysis and de novo motif analysis to determine new biomarker candidates. These data revealed the gene-regulatory interactions and noncoding factors that can affect NAFLD progression. In summary, our study provides a valuable resource for the human epigenome by applying an advanced approach to facilitate diagnosis and treatment by understanding the non-coding genome of NAFLD.

Analysis of Global Trends in the Cross-border Transfer of Personal Data and Its Implications for Korea (개인정보 국외이전 관련 규범 국제 동향 분석 및 한국에의 시사점)

  • Bomin-Ko
    • Korea Trade Review
    • /
    • v.46 no.6
    • /
    • pp.239-255
    • /
    • 2021
  • To review the theoretical background of regulatory approaches to cross-border transfer of personal data, this paper divides major digital trade participating countries into four types according to the OECD - non-regulatory, post-intervention, pre-supervision, and national control. It then analyzes the US, Japan, the EU, and China respectively that belong to each type. South Korea, which is currently about to pass the amendment by the National Assembly, has identified that it is in the middle of post-intervention and pre-supervision, and needs to evolve into pre-supervision norms like the EU while it has to participate more actively in the process of establishing international digital trade rules. Korea first needs to sign digital trade agreements and promote mutual certification projects more actively from the standpoint of a medium-sized open country with growing digital companies and digitally-open consumers. Second, the government should fully consider the interests of not only companies but also various trade stakeholders including domestic consumers, when drafting and implementing trade policies. To this end, 'a single window approach' is needed not only at the Ministry of Trade, Industry, and Energy, but also at the level of the entire government which require an integrated form of digital trade policy governance.

Immune modulation and possible pathological implications mediated by naturally produced immunoglobulin G idiotypes: from historical to recent experimental and clinical studies focused on atopic dermatitis

  • Lucas Santander;Nicolle Rakanidis Machado;Beatriz Oliveira Fagundes;Jefferson Russo Victor
    • Clinical and Experimental Vaccine Research
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • Since the 1950s decade, it has been suggested that a naturally produced or induced repertoire of immunoglobulin G (IgG) idiotypes may exert some immunoregulatory functions. In the last decades, some more advanced theories have suggested that the repertoire of IgG idiotypes may influence the development or control of some atopic diseases. In atopic dermatitis (AD), some evidence indicated that the IgG repertoire obtained from these patients could effectively mediate regulatory functions on thymic and peripheral CD4+ and CD8+ T cells. Furthermore, some recent clinical trials have corroborated the hypothesis that IgG from AD patients can exert regulatory functions in vivo. Here, we revised some historical aspects that yield current approaches developed in vitro and in vivo to elucidate a recently proposed theory termed "hooks without bait" that can strengthen the broad spectrum of research about evaluating different sets of IgG idiotypes and determine their immunological effects.

Attitude control in spacecraft orbit-raising using a reduced quaternion model

  • Yang, Yaguang
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.427-441
    • /
    • 2014
  • Orbit-raising is an important step to place spacecraft from parking orbits into working orbits. Attitude control system design is crucial in the success of orbit-raising. Several text books have discussed this design and focused mainly on the traditional methods based on single-input single-output (SISO) transfer function models. These models are not good representations for many orbit-raising control systems which have multiple thrusters and each thruster has impact on the attitude defined by all outputs. Only one published article is known to use a more suitable multi-input multi-output (MIMO) Euler angle model in spacecraft orbit-raising attitude control system design. In this paper, a quaternion based MIMO model for the orbit-raising attitude control system design is proposed. The advantages of using quaternion based model for orbit-raising control system designs are (a) there is no need for mathematical transformations because the attitude measurements are normally given by quaternion, (b) quaternion based model does not depend on rotational sequences, which reduces the chance of human errors, and (c) the singular point of reduced quaternion model is the farthest from the operational point where linearization is performed. We will show that performance of quaternion model based design will be as good as the performance of Euler angle model based design for orbit-raising problem.