Browse > Article
http://dx.doi.org/10.14348/molcells.2021.0057

Post-Translational Modifications in Transcription Factors that Determine T Helper Cell Differentiation  

Kim, Hyo Kyeong (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Jeong, Mi Gyeong (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Hwang, Eun Sook (College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University)
Abstract
CD4+ T helper (Th) cells play a crucial role in the modulation of innate and adaptive immune responses through the differentiation of Th precursor cells into several subsets, including Th1, Th2, Th17, and regulatory T (Treg) cells. Effector Th and Treg cells are distinguished by the production of signature cytokines and are important for eliminating intracellular and extracellular pathogens and maintaining immune homeostasis. Stimulation of naive Th cells by T cell receptor and specific cytokines activates master transcription factors and induces lineage specification during the differentiation of Th cells. The master transcription factors directly activate the transcription of signature cytokine genes and also undergo post-translational modifications to fine-tune cytokine production and maintain immune balance through cross-regulation with each other. This review highlights the post-translational modifications of master transcription factors that control the differentiation of effector Th and Treg cells and provides additional insights on the immune regulation mediated by protein argininemodifying enzymes in effector Th cells.
Keywords
arginine-modifying enzyme; CD4 T cell differentiation; effector Th and Treg cell; master regulatory transcription factor; post-translational modifications;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pawlak, M., Ho, A.W., and Kuchroo, V.K. (2020). Cytokines and transcription factors in the differentiation of CD4(+) T helper cell subsets and induction of tissue inflammation and autoimmunity. Curr. Opin. Immunol. 67, 57-67.   DOI
2 Roberts, C.A., Dickinson, A.K., and Taams, L.S. (2015). The interplay between monocytes/macrophages and CD4(+) T cell subsets in rheumatoid arthritis. Front. Immunol. 6, 571.
3 Ruterbusch, M., Pruner, K.B., Shehata, L., and Pepper, M. (2020). In vivo CD4(+) T cell differentiation and function: revisiting the Th1/Th2 paradigm. Annu. Rev. Immunol. 38, 705-725.   DOI
4 d'Hennezel, E., Bin Dhuban, K., Torgerson, T., and Piccirillo, C.A. (2012). The immunogenetics of immune dysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J. Med. Genet. 49, 291-302.   DOI
5 Donald, J.E., Kulp, D.W., and DeGrado, W.F. (2011). Salt bridges: geometrically specific, designable interactions. Proteins 79, 898-915.   DOI
6 Duan, G. and Walther, D. (2015). The roles of post-translational modifications in the context of protein interaction networks. PLoS Comput. Biol. 11, e1004049.   DOI
7 Glozak, M.A., Sengupta, N., Zhang, X., and Seto, E. (2005). Acetylation and deacetylation of non-histone proteins. Gene 363, 15-23.   DOI
8 Guccione, E. and Richard, S. (2019). The regulation, functions and clinical relevance of arginine methylation. Nat. Rev. Mol. Cell Biol. 20, 642-657.   DOI
9 Han, L., Yang, J., Wang, X., Wu, Q., Yin, S., Li, Z., Zhang, J., Xing, Y., Chen, Z., Tsun, A., et al. (2014). The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor gammat (RORgammat) in Th17 cells. J. Biol. Chem. 289, 25546-25555.   DOI
10 Hsu, C.Y., Yeh, L.T., Fu, S.H., Chien, M.W., Liu, Y.W., Miaw, S.C., Chang, D.M., and Sytwu, H.K. (2018). SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J. Clin. Invest. 128, 3779-3793.   DOI
11 Hwang, E.S., Hong, J.H., and Glimcher, L.H. (2005a). IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J. Exp. Med. 202, 1289-1300.   DOI
12 Hwang, J.R., Byeon, Y., Kim, D., and Park, S.G. (2020). Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp. Mol. Med. 52, 750-761.   DOI
13 Imbratta, C., Hussein, H., Andris, F., and Verdeil, G. (2020). c-MAF, a Swiss army knife for tolerance in lymphocytes. Front. Immunol. 11, 206.   DOI
14 Snyder, K.J., Zitzer, N.C., Gao, Y., Choe, H.K., Sell, N.E., Neidemire-Colley, L., Ignaci, A., Kale, C., Devine, R.D., Abad, M.G., et al. (2020). PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight 5, e131099.   DOI
15 Hsu, C.Y., Fu, S.H., Chien, M.W., Liu, Y.W., Chen, S.J., and Sytwu, H.K. (2020). Post-translational modifications of transcription factors harnessing the etiology and pathophysiology in colonic diseases. Int. J. Mol. Sci. 21, 3207.   DOI
16 Rutz, S. and Ouyang, W. (2016). The Itch to degrade ROR-gammat. Nat. Immunol. 17, 898-900.   DOI
17 Shevyrev, D. and Tereshchenko, V. (2019). Treg heterogeneity, function, and homeostasis. Front. Immunol. 10, 3100.   DOI
18 Curran, A.M., Naik, P., Giles, J.T., and Darrah, E. (2020). PAD enzymes in rheumatoid arthritis: pathogenic effectors and autoimmune targets. Nat. Rev. Rheumatol. 16, 301-315.   DOI
19 de Jesus, T.J., Tomalka, J.A., Centore, J.T., Staback Rodriguez, F.D., Agarwal, R.A., Liu, A.R., Kern, T.S., and Ramakrishnan, P. (2021). Negative regulation of FOXP3 expression by c-Rel O-GlcNAcylation. Glycobiology 2021 Jan 12 [Epub]. https://doi.org/10.1093/glycob/cwab001   DOI
20 Singh, A.K., Khare, P., Obaid, A., Conlon, K.P., Basrur, V., DePinho, R.A., and Venuprasad, K. (2018). SUMOylation of ROR-gammat inhibits IL-17 expression and inflammation via HDAC2. Nat. Commun. 9, 4515.   DOI
21 Song, N., Cao, C., Tang, Y., Bi, L., Jiang, Y., Zhou, Y., Song, X., Liu, L., and Ge, W. (2018). The ubiquitin ligase SCF(FBXW7alpha) promotes GATA3 degradation. J. Cell. Physiol. 233, 2366-2377.   DOI
22 Asano, M., Toda, M., Sakaguchi, N., and Sakaguchi, S. (1996). Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387-396.   DOI
23 Rutz, S., Kayagaki, N., Phung, Q.T., Eidenschenk, C., Noubade, R., Wang, X., Lesch, J., Lu, R., Newton, K., Huang, O.W., et al. (2015). Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 518, 417-421.   DOI
24 Barber, K.W. and Rinehart, J. (2018). The ABCs of PTMs. Nat. Chem. Biol. 14, 188-192.   DOI
25 Beier, U.H., Akimova, T., Liu, Y., Wang, L., and Hancock, W.W. (2011). Histone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells. Curr. Opin. Immunol. 23, 670-678.   DOI
26 Yang, Y., He, Y., Wang, X., Liang, Z., He, G., Zhang, P., Zhu, H., Xu, N., and Liang, S. (2017). Protein SUMOylation modification and its associations with disease. Open Biol. 7, 170167.   DOI
27 Young, R.L., Page, A.J., Cooper, N.J., Frisby, C.L., and Blackshaw, L.A. (2010). Sensory and motor innervation of the crural diaphragm by the vagus nerves. Gastroenterology 138, 1091-1101.e5.   DOI
28 Lin, B.S., Tsai, P.Y., Hsieh, W.Y., Tsao, H.W., Liu, M.W., Grenningloh, R., Wang, L.F., Ho, I.C., and Miaw, S.C. (2010). SUMOylation attenuates c-Mafdependent IL-4 expression. Eur. J. Immunol. 40, 1174-1184.   DOI
29 Li, Z., Lin, F., Zhuo, C., Deng, G., Chen, Z., Yin, S., Gao, Z., Piccioni, M., Tsun, A., Cai, S., et al. (2014). PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J. Biol. Chem. 289, 26872-26881.   DOI
30 Lim, H.W., Kang, S.G., Ryu, J.K., Schilling, B., Fei, M., Lee, I.S., Kehasse, A., Shirakawa, K., Yokoyama, M., Schnolzer, M., et al. (2015). SIRT1 deacetylates RORgammat and enhances Th17 cell generation. J. Exp. Med. 212, 973.   DOI
31 Liu, B., Salgado, O.C., Singh, S., Hippen, K.L., Maynard, J.C., Burlingame, A.L., Ball, L.E., Blazar, B.R., Farrar, M.A., Hogquist, K.A., et al. (2019). The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation. Nat. Commun. 10, 354.   DOI
32 Kitagawa, K., Shibata, K., Matsumoto, A., Matsumoto, M., Ohhata, T., Nakayama, K.I., Niida, H., and Kitagawa, M. (2014). Fbw7 targets GATA3 through cyclin-dependent kinase 2-dependent proteolysis and contributes to regulation of T-cell development. Mol. Cell. Biol. 34, 2732-2744.   DOI
33 Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121-1133.   DOI
34 Zhang, Z., Tong, J., Tang, X., Juan, J., Cao, B., Hurren, R., Chen, G., Taylor, P., Xu, X., Shi, C.X., et al. (2016). The ubiquitin ligase HERC4 mediates c-Maf ubiquitination and delays the growth of multiple myeloma xenografts in nude mice. Blood 127, 1676-1686.   DOI
35 Zhao, X., Zheng, B., Huang, Y., Yang, D., Katzman, S., Chang, C., Fowell, D., and Zeng, W.P. (2007). Interaction between GATA-3 and the transcriptional coregulator Pias1 is important for the regulation of Th2 immune responses. J. Immunol. 179, 8297-8304.   DOI
36 Yamashita, M., Ukai-Tadenuma, M., Miyamoto, T., Sugaya, K., Hosokawa, H., Hasegawa, A., Kimura, M., Taniguchi, M., DeGregori, J., and Nakayama, T. (2004). Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J. Biol. Chem. 279, 26983-26990.   DOI
37 Jang, E.J., Park, H.R., Hong, J.H., and Hwang, E.S. (2013). Lysine 313 of T-box is crucial for modulation of protein stability, DNA binding, and threonine phosphorylation of T-bet. J. Immunol. 190, 5764-5770.   DOI
38 Jenner, R.G., Townsend, M.J., Jackson, I., Sun, K., Bouwman, R.D., Young, R.A., Glimcher, L.H., and Lord, G.M. (2009). The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc. Natl. Acad. Sci. U. S. A. 106, 17876-17881.   DOI
39 Kagoya, Y., Saijo, H., Matsunaga, Y., Guo, T., Saso, K., Anczurowski, M., Wang, C.H., Sugata, K., Murata, K., Butler, M.O., et al. (2019). Arginine methylation of FOXP3 is crucial for the suppressive function of regulatory T cells. J. Autoimmun. 97, 10-21.   DOI
40 Kumar, S., Tsai, C.J., and Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Eng. 13, 179-191.   DOI
41 Kwon, H.S., Lim, H.W., Wu, J., Schnolzer, M., Verdin, E., and Ott, M. (2012). Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J. Immunol. 188, 2712-2721.   DOI
42 Lazarevic, V., Chen, X., Shim, J.H., Hwang, E.S., Jang, E., Bolm, A.N., Oukka, M., Kuchroo, V.K., and Glimcher, L.H. (2011). T-bet represses T(H)17 differentiation by preventing Runx1-mediated activation of the gene encoding RORgammat. Nat. Immunol. 12, 96-104.   DOI
43 Leavenworth, J.W., Ma, X., Mo, Y.Y., and Pauza, M.E. (2009). SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. J. Immunol. 183, 1110-1119.   DOI
44 Li, B., Samanta, A., Song, X., Iacono, K.T., Bembas, K., Tao, R., Basu, S., Riley, J.L., Hancock, W.W., Shen, Y., et al. (2007). FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc. Natl. Acad. Sci. U. S. A. 104, 4571-4576.   DOI
45 Chemin, K., Gerstner, C., and Malmstrom, V. (2019). Effector functions of CD4+ T cells at the site of local autoimmune inflammation-lessons from rheumatoid arthritis. Front. Immunol. 10, 353.   DOI
46 Kathania, M., Khare, P., Zeng, M., Cantarel, B., Zhang, H., Ueno, H., and Venuprasad, K. (2016). Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-gammat ubiquitination. Nat. Immunol. 17, 997-1004.   DOI
47 Bettelli, E., Dastrange, M., and Oukka, M. (2005). Foxp3 interacts with nuclear factor of activated T cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc. Natl. Acad. Sci. U. S. A. 102, 5138-5143.   DOI
48 Boisvert, F.M., Rhie, A., Richard, S., and Doherty, A.J. (2005). The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4, 1834-1841.   DOI
49 Chang, S. and Aune, T.M. (2007). Dynamic changes in histone-methylation 'marks' across the locus encoding interferon-gamma during the differentiation of T helper type 2 cells. Nat. Immunol. 8, 723-731.   DOI
50 Chang, Y.H., Weng, C.L., and Lin, K.I. (2020). O-GlcNAcylation and its role in the immune system. J. Biomed. Sci. 27, 57.   DOI
51 Bennett, C.L., Yoshioka, R., Kiyosawa, H., Barker, D.F., Fain, P.R., Shigeoka, A.O., and Chance, P.F. (2000). X-Linked syndrome of polyendocrinopathy, immune dysfunction, and diarrhea maps to Xp11.23-Xq13.3. Am. J. Hum. Genet. 66, 461-468.   DOI
52 Pan, F., Yu, H., Dang, E.V., Barbi, J., Pan, X., Grosso, J.F., Jinasena, D., Sharma, S.M., McCadden, E.M., Getnet, D., et al. (2009). Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science 325, 1142-1146.   DOI
53 Fuhrmann, J., Clancy, K.W., and Thompson, P.R. (2015). Chemical biology of protein arginine modifications in epigenetic regulation. Chem. Rev. 115, 5413-5461.   DOI
54 Marth, J.D. and Grewal, P.K. (2008). Mammalian glycosylation in immunity. Nat. Rev. Immunol. 8, 874-887.   DOI
55 Martinez-Sanchez, M.E., Huerta, L., Alvarez-Buylla, E.R., and Villarreal Lujan, C. (2018). Role of cytokine combinations on CD4+ T cell differentiation, partial polarization, and plasticity: continuous network modeling approach. Front. Physiol. 9, 877.   DOI
56 Morawski, P.A., Mehra, P., Chen, C., Bhatti, T., and Wells, A.D. (2013). Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J. Biol. Chem. 288, 24494-24502.   DOI
57 Nie, H., Zheng, Y., Li, R., Guo, T.B., He, D., Fang, L., Liu, X., Xiao, L., Chen, X., Wan, B., et al. (2013). Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat. Med. 19, 322-328.   DOI
58 Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., Miyachi, Y., Tsukada, T., and Sakaguchi, S. (2007). Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685-689.   DOI
59 Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kuhnel, F., and Woller, N. (2018). CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell. Mol. Life Sci. 75, 689-713.   DOI
60 Liu, Y., Lightfoot, Y.L., Seto, N., Carmona-Rivera, C., Moore, E., Goel, R., O'Neil, L., Mistry, P., Hoffmann, V., Mondal, S., et al. (2018). Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus. JCI Insight 3, e124729.   DOI
61 Hwang, E.S., Szabo, S.J., Schwartzberg, P.L., and Glimcher, L.H. (2005b). T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 307, 430-433.   DOI
62 Sun, B., Chang, H.H., Salinger, A., Tomita, B., Bawadekar, M., Holmes, C.L., Shelef, M.A., Weerapana, E., Thompson, P.R., and Ho, I.C. (2019). Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight 4, e129687.   DOI
63 Kaplan, M.H., Schindler, U., Smiley, S.T., and Grusby, M.J. (1996). Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313-319.   DOI
64 Zhu, J. (2017). GATA3 regulates the development and functions of innate lymphoid cell subsets at multiple stages. Front. Immunol. 8, 1571.   DOI
65 Zhu, J., Jankovic, D., Oler, A.J., Wei, G., Sharma, S., Hu, G., Guo, L., Yagi, R., Yamane, H., Punkosdy, G., et al. (2012). The transcription factor T-bet is induced by multiple pathways and prevents an endogenous Th2 cell program during Th1 cell responses. Immunity 37, 660-673.   DOI
66 Zhu, J., Yamane, H., and Paul, W.E. (2010). Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445-489.   DOI
67 Li, Y., Lu, Y., Wang, S., Han, Z., Zhu, F., Ni, Y., Liang, R., Zhang, Y., Leng, Q., Wei, G., et al. (2016). USP21 prevents the generation of T-helper-1-like Treg cells. Nat. Commun. 7, 13559.   DOI
68 Celikkaya, H., Cosacak, M.I., Papadimitriou, C., Popova, S., Bhattarai, P., Biswas, S.N., Siddiqui, T., Wistorf, S., Nevado-Alcalde, I., Naumann, L., et al. (2019). GATA3 promotes the neural progenitor state but not neurogenesis in 3D traumatic injury model of primary human cortical astrocytes. Front. Cell. Neurosci. 13, 23.   DOI
69 DuPage, M. and Bluestone, J.A. (2016). Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149-163.   DOI
70 Hosokawa, H., Tanaka, T., Endo, Y., Kato, M., Shinoda, K., Suzuki, A., Motohashi, S., Matsumoto, M., Nakayama, K.I., and Nakayama, T. (2016). Akt1-mediated Gata3 phosphorylation controls the repression of IFNgamma in memory-type Th2 cells. Nat. Commun. 7, 11289.   DOI
71 Lanouette, S., Mongeon, V., Figeys, D., and Couture, J.F. (2014). The functional diversity of protein lysine methylation. Mol. Syst. Biol. 10, 724.   DOI
72 Liu, C.C., Lai, C.Y., Yen, W.F., Lin, Y.H., Chang, H.H., Tai, T.S., Lu, Y.J., Tsao, H.W., Ho, I.C., and Miaw, S.C. (2015). Reciprocal regulation of C-Maf tyrosine phosphorylation by Tec and Ptpn22. PLoS One 10, e0127617.   DOI
73 Pai, S.Y., Truitt, M.L., and Ho, I.C. (2004). GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells. Proc. Natl. Acad. Sci. U. S. A. 101, 1993-1998.   DOI
74 van Loosdregt, J., Vercoulen, Y., Guichelaar, T., Gent, Y.Y., Beekman, J.M., van Beekum, O., Brenkman, A.B., Hijnen, D.J., Mutis, T., Kalkhoven, E., et al. (2010). Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115, 965-974.   DOI
75 Yan, F., Mo, X., Liu, J., Ye, S., Zeng, X., and Chen, D. (2017). Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling (Review). Mol. Med. Rep. 16, 7175-7184.   DOI
76 Ramakrishnan, P., Clark, P.M., Mason, D.E., Peters, E.C., Hsieh-Wilson, L.C., and Baltimore, D. (2013). Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation. Sci. Signal. 6, ra75.   DOI
77 Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., and Glimcher, L.H. (2000). A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100, 655-669.   DOI
78 Nagai, Y., Ji, M.Q., Zhu, F., Xiao, Y., Tanaka, Y., Kambayashi, T., Fujimoto, S., Goldberg, M.M., Zhang, H., Li, B., et al. (2019). PRMT5 associates with the FOXP3 homomer and when disabled enhances targeted p185(erbB2/neu) tumor immunotherapy. Front. Immunol. 10, 174.   DOI
79 van Loosdregt, J., Brunen, D., Fleskens, V., Pals, C.E., Lam, E.W., and Coffer, P.J. (2011). Rapid temporal control of Foxp3 protein degradation by sirtuin-1. PLoS One 6, e19047.   DOI
80 Zaidan, N. and Ottersbach, K. (2018). The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biol. 8, 180152.   DOI
81 Virag, D., Dalmadi-Kiss, B., Vekey, K., Drahos, L., Klebovich, I., Antal, I., and Ludanyi, K. (2020). Current trends in the analysis of post-translational modifications. Chromatographia 83, 1-10.   DOI
82 Walsh, G. and Jefferis, R. (2006). Post-translational modifications in the context of therapeutic proteins. Nat. Biotechnol. 24, 1241-1252.   DOI
83 Wang, A., Zhu, F., Liang, R., Li, D., and Li, B. (2019). Regulation of T cell differentiation and function by ubiquitin-specific proteases. Cell. Immunol. 340, 103922.   DOI
84 Wang, L., de Zoeten, E.F., Greene, M.I., and Hancock, W.W. (2009). Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nat. Rev. Drug Discov. 8, 969-981.   DOI
85 van Loosdregt, J., Fleskens, V., Tiemessen, M.M., Mokry, M., van Boxtel, R., Meerding, J., Pals, C.E., Kurek, D., Baert, M.R., Delemarre, E.M., et al. (2013b). Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity 39, 298-310.   DOI
86 Tanaka, Y., Nagai, Y., Okumura, M., Greene, M.I., and Kambayashi, T. (2020). PRMT5 is required for T cell survival and proliferation by maintaining cytokine signaling. Front. Immunol. 11, 621.   DOI
87 Tay, C., Kanellakis, P., Hosseini, H., Cao, A., Toh, B.H., Bobik, A., and Kyaw, T. (2019). B cell and CD4 T cell interactions promote development of atherosclerosis. Front. Immunol. 10, 3046.   DOI
88 van Loosdregt, J., Fleskens, V., Fu, J., Brenkman, A.B., Bekker, C.P., Pals, C.E., Meerding, J., Berkers, C.R., Barbi, J., Grone, A., et al. (2013a). Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259-271.   DOI
89 Chen, A., Lee, S.M., Gao, B., Shannon, S., Zhu, Z., and Fang, D. (2011). c-Abl-mediated tyrosine phosphorylation of the T-bet DNA-binding domain regulates CD4+ T-cell differentiation and allergic lung inflammation. Mol. Cell. Biol. 31, 3445-3456.   DOI
90 Deng, G., Nagai, Y., Xiao, Y., Li, Z., Dai, S., Ohtani, T., Banham, A., Li, B., Wu, S.L., Hancock, W., et al. (2015). Pim-2 kinase influences regulatory T cell function and stability by mediating Foxp3 protein N-terminal phosphorylation. J. Biol. Chem. 290, 20211-20220.   DOI
91 Swiercz, R., Cheng, D., Kim, D., and Bedford, M.T. (2007). Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J. Biol. Chem. 282, 16917-16923.   DOI
92 Wu, Y., Borde, M., Heissmeyer, V., Feuerer, M., Lapan, A.D., Stroud, J.C., Bates, D.L., Guo, L., Han, A., Ziegler, S.F., et al. (2006). FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375-387.   DOI
93 Webb, L.M., Amici, S.A., Jablonski, K.A., Savardekar, H., Panfil, A.R., Li, L., Zhou, W., Peine, K., Karkhanis, V., Bachelder, E.M., et al. (2017). PRMT5-selective inhibitors suppress inflammatory t cell responses and experimental autoimmune encephalomyelitis. J. Immunol. 198, 1439-1451.   DOI
94 Yang, Y. and Bedford, M.T. (2013). Protein arginine methyltransferases and cancer. Nat. Rev. Cancer 13, 37-50.   DOI
95 Sen, S., He, Z., Ghosh, S., Dery, K.J., Yang, L., Zhang, J., and Sun, Z. (2018). PRMT1 plays a critical role in Th17 differentiation by regulating reciprocal recruitment of STAT3 and STAT5. J. Immunol. 201, 440-450.   DOI
96 Wang, X., Yang, J., Han, L., Zhao, K., Wu, Q., Bao, L., Li, Z., Lv, L., and Li, B. (2015). TRAF5-mediated Lys-63-linked polyubiquitination plays an essential role in positive regulation of RORgammat in promoting IL-17A expression. J. Biol. Chem. 290, 29086-29094.   DOI
97 Wu, Q., Nie, J., Gao, Y., Xu, P., Sun, Q., Yang, J., Han, L., Chen, Z., Wang, X., Lv, L., et al. (2015). Reciprocal regulation of RORgammat acetylation and function by p300 and HDAC1. Sci. Rep. 5, 16355.   DOI
98 Yamagata, T., Mitani, K., Oda, H., Suzuki, T., Honda, H., Asai, T., Maki, K., Nakamoto, T., and Hirai, H. (2000). Acetylation of GATA-3 affects T-cell survival and homing to secondary lymphoid organs. EMBO J. 19, 4676-4687.   DOI
99 Harris, M.L., Darrah, E., Lam, G.K., Bartlett, S.J., Giles, J.T., Grant, A.V., Gao, P., Scott, W.W., Jr., El-Gabalawy, H., Casciola-Rosen, L., et al. (2008). Association of autoimmunity to peptidyl arginine deiminase type 4 with genotype and disease severity in rheumatoid arthritis. Arthritis Rheum. 58, 1958-1967.   DOI
100 Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983.   DOI
101 Hori, S., Nomura, T., and Sakaguchi, S. (2003). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057-1061.   DOI
102 Hosokawa, H., Kato, M., Tohyama, H., Tamaki, Y., Endo, Y., Kimura, M.Y., Tumes, D.J., Motohashi, S., Matsumoto, M., Nakayama, K.I., et al. (2015). Methylation of Gata3 protein at Arg-261 regulates transactivation of the Il5 gene in T helper 2 cells. J. Biol. Chem. 290, 13095-13103.   DOI
103 Szabo, S.J., Sullivan, B.M., Stemmann, C., Satoskar, A.R., Sleckman, B.P., and Glimcher, L.H. (2002). Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338-342.   DOI