• Title/Summary/Keyword: regular minimal set

Search Result 17, Processing Time 0.021 seconds

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Resolution Obstacle Detection (고분해능 장애물 탐지를 위한 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • This paper presents the optimal design of an overlapped ultrasonic sensor ring for high resolution obstacle detection of an autonomous mobile robot. It is assumed that a set of low directivity ultrasonic sensors of the same type are arranged along a circle of nonzero radius at a regular spacing with their beams overlapped. First, taking into account the dead angle region, the entire range of obstacle detection is determined with reference to the center of an overlapped ultrasonic sensor ring. Second, the optimal design index of an overlapped ultrasonic sensor ring is defined as the area closeness of three sensing subzones resulting from beam overlap. Third, the lower and upper bounds on the number of ultrasonic sensors are derived, which can guarantee minimal beam overlap and also avoid excessive beam overlap among adjacent ultrasonic sensors. Fourth, employing a commercial low directivity ultrasonic sensor, an optimal design example of an overlapped ultrasonic sensor ring is given along with the ultrasonic sensor ring prototype mounted on top of a mobile robot. Finally, some experimental results using our prototype ultrasonic sensor ring are given to demonstrate the validity and performance of an optimally overlapped ultrasonic sensor ring for high resolution obstacle detection.

Design of Overlapped Ultrasonic Sensor Ring and Its Application to Obstacle Detection (중첩 초음파 센서 링의 설계 및 장애물 탐지에의 응용)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • This paper presents the optimal design method of an overlapped ultrasonic sensor ring for reduced positional uncertainty, and its application to the obstacle detection with improved resolution. Basically, it is assumed that a set of ultrasonic sensors are installed to form a circle at regular intervals with their beams overlapped. First, exploiting the overlapped beam pattern, the positional uncertainty inherent to an ultrasonic sensor is shown to be significantly reduced. Second, for an ideal ultrasonic sensor ring of zero radius, the effective beam width is defined to represent the positional uncertainty, and the optimal number of ultrasonic sensors required for minimal effective beam width is obtained. Third, for an actual ultrasonic sensor ring of nonzero radius, the design index is defined to represent the degree of positional uncertainty, and an optimal design of an overlapped ultrasonic sensor ring consisting of commercial ultrasonic sensors with low directivity is given. Fourth, given measured distances from ultrasonic sensors, the geometric method is described to compute the obstacle position with reference to the center of a mobile robot. Finally, through experiments using our overlapped ultrasonic sensor ring prototype, the validity and performance of the proposed method is demonstrated.

RINGS WITH A RIGHT DUO FACTOR RING BY AN IDEAL CONTAINED IN THE CENTER

  • Cheon, Jeoung Soo;Kwak, Tai Keun;Lee, Yang;Piao, Zhelin;Yun, Sang Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.529-545
    • /
    • 2022
  • This article concerns a ring property that arises from combining one-sided duo factor rings and centers. A ring R is called right CIFD if R/I is right duo by some proper ideal I of R such that I is contained in the center of R. We first see that this property is seated between right duo and right π-duo, and not left-right symmetric. We prove, for a right CIFD ring R, that W(R) coincides with the set of all nilpotent elements of R; that R/P is a right duo domain for every minimal prime ideal P of R; that R/W(R) is strongly right bounded; and that every prime ideal of R is maximal if and only if R/W(R) is strongly regular, where W(R) is the Wedderburn radical of R. It is also proved that a ring R is commutative if and only if D3(R) is right CIFD, where D3(R) is the ring of 3 by 3 upper triangular matrices over R whose diagonals are equal. Furthermore, we show that the right CIFD property does not pass to polynomial rings, and that the polynomial ring over a ring R is right CIFD if and only if R/I is commutative by a proper ideal I of R contained in the center of R.

Clinical Effects of Prothinoamide, Cycloserine, Para-Aminosalicylic Acid, Ofloxasine in Retreatment of Pulmonary Tuberculosis (폐결핵 재치료 환자에서 Prothionamide, Cycloserine, Paraminosalicylic acid, Ofloxasine을 이용한 경구 4제 요법의 임상 효과)

  • Hong, Jae-Rak;Yoo, Min-Kyu;Jeong, Jae-Man;Kim, Young-Jun;Son, Mal-Hyeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.5
    • /
    • pp.693-700
    • /
    • 1996
  • Background : Antituberculous therapy is set a short-term therpy used isoniazid(INH), rifampin(RFP), ethambutol(EMB), pyrazinamide(PZA) from 1970s' and treatment rate has been very improved. But drug interruption or irregular medication due to side effects and resistance of drug are serious problem to retreatment cases, specially. Ofloxasine(OFX), developed from Quinolone at 1980's is effective not only other respiratory infectious disease but also pulmonary tube rculosis. And this is useful drug instead of injection agents for retreatment patients who have side effects to other drugs, lived far distance from medical clinics. So, we will evaluate theffectiveness as four oral drugs involving OFX. Method : A retrospective study was made through the regular follow up of smear positive cases,who treated by four drug, namely, prothionamide (PTA) cycloserine(CS), OFX, paraminosalicylic acid(pAS). Results: 1) Out of 66case with positive sputum AFB smear, 42(64%)cases achieved the negative conversion. 2) Considering the negative conversion in all group, 34 case (52%) of sputum conversion occured within first 6 months, on the extent of diease was minimal, moderate, far advanced pulmonary tuberculosis, sputum AFB smear negative response to treatment was 100%, 78%, 46% respectively. 3) The roentgenological improvement occured in 38(58%), extent of diease was minimal, moderately, far advanced pulmonary tuberculosis, Roentgenological improvement to retreatment was 75%, 64%, 46%. 4) When the drnation of patients illness was less than 1 year, 1 to 3 years, 3 10 5 years and more than 5 years, sputum AFB smear negative response to retreatment was 100%, 88%, 80%, 52 %. 5) On side effects, major problems are gastrointestinal troubles, mild liver function abnormality, psychotic problemes, and skin problem(urticaria, itching sensation). Conclusion : The duration & extents of patients illness was shorter & minimal, sputum AFB smear negative response rate was better. Radiologic response is better as shorter duration and minimal extent of diease. But, as diease is longer duration & far advanced, sputum negative conversion & Roentgenological improvement is poor and limited. The adverse reaction was mainly observed gastrointestinal troubles(indigestion, abdominal pain, nausea, vomiting, diarrhea) and are well controled by symptomatic management in most patients, as regard to tolerance to the secondary drugs.

  • PDF

Performance Evaluation, Optimal Design and Complex Obstacle Detection of an Overlapped Ultrasonic Sensor Ring (중첩 초음파 센서 링의 성능 평가, 최적 설계 및 복합 장애물 탐지)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.341-347
    • /
    • 2011
  • This paper presents the performance evaluation. optimal design. and complex obstacle detection of an overlapped ultrasonic sensor ring by introducing a new concept of effective beam width. It is assumed that a set of ultrasonic sensors of the same type are arranged along a circle of nonzero radius at regular spacings with their beams overlapped. First, the global positional uncertainty of an overlapped ultrasonic sensor ring is expressed by the average value of local positional uncertainty over the entire obstacle detection range. The effective beam width of an overlapped ultrasonic sensor ring is assessed as the beam width of a single ultrasonic sensor having the same amount of global positional uncertainty, from which a normalized obstacle detection performance index is defined. Second. using the defined index, the design parameters of an overlapped ultrasonic sensor ring are optimized for minimal positional uncertainty in obstacle detection. For a given number of ultrasonic sensors, the optimal radius of an overlapped ultrasonic sensor ring is determined, and for a given radius of an overlapped ultrasonic sensor ring, the optimal number of ultrasonic sensors is determined. Third, the decision rules of positional uncertainty zone for multiple obstacle detection are provided based on the inequality relationships among obstacle distances by three adjacent ultrasonic sensors. Using the provided rules, the obstacle outline detection is performed in a rather complex environment consisting of several obstacles of different shapes.

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Performance Obstacle Detection Using Effective Beam Overlap (효과적인 빔 폭 중첩을 이용한 고성능 장애물 탐지용 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • This paper presents the systematic optimal design of an overlapped ultrasonic sensor ring for high performance obstacle detection using effective beam overlap. Basically, a set of low directivity ultrasonic sensors of the same type are arranged in a circle at regular intervals with their beams overlapped. First, both real and simplified beam patterns of an ultrasonic sensor and several sensor models for obstacle position estimation within its beam pattern are introduced. Second, the obstacle detection range of an overlapped ultrasonic sensor ring and its simple sensor model for obstacle position estimation are described. Third, for both conic and non-conic shaped beam pattern, the design indices of an overlapped ultrasonic sensor ring for minimal positional uncertainty in obstacle detection are defined. Fourth, the constraints imposed on the structural parameters of an overlapped ultrasonic sensor ring to guarantee non empty beam overlap and to avoid excessive beam overlap are derived. Fifth, the optimal number of ultrasonic sensors for a given radius of an overlapped ultrasonic sensor ring and the optimal radius of an overlapped ultrasonic sensor ring are determined. Throughout this paper, the MA40B8 from Murata Inc. is taken as a representative commercial low directivity ultrasonic sensor.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF