• 제목/요약/키워드: regression function

검색결과 2,134건 처리시간 0.027초

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제23권6호
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

Stable activation-based regression with localizing property

  • Shin, Jae-Kyung;Jhong, Jae-Hwan;Koo, Ja-Yong
    • Communications for Statistical Applications and Methods
    • /
    • 제28권3호
    • /
    • pp.281-294
    • /
    • 2021
  • In this paper, we propose an adaptive regression method based on the single-layer neural network structure. We adopt a symmetric activation function as units of the structure. The activation function has a flexibility of its form with a parametrization and has a localizing property that is useful to improve the quality of estimation. In order to provide a spatially adaptive estimator, we regularize coefficients of the activation functions via ℓ1-penalization, through which the activation functions to be regarded as unnecessary are removed. In implementation, an efficient coordinate descent algorithm is applied for the proposed estimator. To obtain the stable results of estimation, we present an initialization scheme suited for our structure. Model selection procedure based on the Akaike information criterion is described. The simulation results show that the proposed estimator performs favorably in relation to existing methods and recovers the local structure of the underlying function based on the sample.

Censored varying coefficient regression model using Buckley-James method

  • Shim, Jooyong;Seok, Kyungha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1167-1177
    • /
    • 2017
  • The censored regression using the pseudo-response variable proposed by Buckley and James has been one of the most well-known models. Recently, the varying coefficient regression model has received a great deal of attention as an important tool for modeling. In this paper we propose a censored varying coefficient regression model using Buckley-James method to consider situations where the regression coefficients of the model are not constant but change as the smoothing variables change. By using the formulation of least squares support vector machine (LS-SVM), the coefficient estimators of the proposed model can be easily obtained from simple linear equations. Furthermore, a generalized cross validation function can be easily derived. In this paper, we evaluated the proposed method and demonstrated the adequacy through simulate data sets and real data sets.

An estimator of the mean of the squared functions for a nonparametric regression

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권3호
    • /
    • pp.577-585
    • /
    • 2009
  • So far in a nonparametric regression model one of the interesting problems is estimating the error variance. In this paper we propose an estimator of the mean of the squared functions which is the numerator of SNR (Signal to Noise Ratio). To estimate SNR, the mean of the squared function should be firstly estimated. Our focus is on estimating the amplitude, that is the mean of the squared functions, in a nonparametric regression using a simple linear regression model with the quadratic form of observations as the dependent variable and the function of a lag as the regressor. Our method can be extended to nonparametric regression models with multivariate functions on unequally spaced design points or clustered designed points.

  • PDF

Kernel Ridge Regression with Randomly Right Censored Data

  • Shim, Joo-Yong;Seok, Kyung-Ha
    • Communications for Statistical Applications and Methods
    • /
    • 제15권2호
    • /
    • pp.205-211
    • /
    • 2008
  • This paper deals with the estimations of kernel ridge regression when the responses are subject to randomly right censoring. The iterative reweighted least squares(IRWLS) procedure is employed to treat censored observations. The hyperparameters of model which affect the performance of the proposed procedure are selected by a generalized cross validation(GCV) function. Experimental results are then presented which indicate the performance of the proposed procedure.

Semiparametric Bayesian Estimation under Structural Measurement Error Model

  • Hwang, Jin-Seub;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제17권4호
    • /
    • pp.551-560
    • /
    • 2010
  • This paper considers a Bayesian approach to modeling a flexible regression function under structural measurement error model. The regression function is modeled based on semiparametric regression with penalized splines. Model fitting and parameter estimation are carried out in a hierarchical Bayesian framework using Markov chain Monte Carlo methodology. Their performances are compared with those of the estimators under structural measurement error model without a semiparametric component.

NEW SELECTION APPROACH FOR RESOLUTION AND BASIS FUNCTIONS IN WAVELET REGRESSION

  • Park, Chun Gun
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.289-305
    • /
    • 2014
  • In this paper we propose a new approach to the variable selection problem for a primary resolution and wavelet basis functions in wavelet regression. Most wavelet shrinkage methods focus on thresholding the wavelet coefficients, given a primary resolution which is usually determined by the sample size. However, both a primary resolution and the basis functions are affected by the shape of an unknown function rather than the sample size. Unlike existing methods, our method does not depend on the sample size and also takes into account the shape of the unknown function.

서포트 벡터 회귀를 이용한 제어기 설계 (Design of controller using Support Vector Regression)

  • 황지환;곽환주;박귀태
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2009년도 정보 및 제어 심포지움 논문집
    • /
    • pp.320-322
    • /
    • 2009
  • Support vector learning attracts great interests in the areas of pattern classification, function approximation, and abnormality detection. In this pater, we design the controller using support vector regression which has good properties in comparison with multi-layer perceptron or radial basis function. The applicability of the presented method is illustrated via an example simulation.

  • PDF

ASYMPTOTIC NORMALITY OF ESTIMATOR IN NON-PARAMETRIC MODEL UNDER CENSORED SAMPLES

  • Niu, Si-Li;Li, Qlan-Ru
    • 대한수학회지
    • /
    • 제44권3호
    • /
    • pp.525-539
    • /
    • 2007
  • Consider the regression model $Y_i=g(x_i)+e_i\;for\;i=1,\;2,\;{\ldots},\;n$, where: (1) $x_i$ are fixed design points, (2) $e_i$ are independent random errors with mean zero, (3) g($\cdot$) is unknown regression function defined on [0, 1]. Under $Y_i$ are censored randomly, we discuss the asymptotic normality of the weighted kernel estimators of g when the censored distribution function is known or unknown.