• Title/Summary/Keyword: regression estimation

Search Result 2,211, Processing Time 0.03 seconds

Monitoring Ground-level SO2 Concentrations Based on a Stacking Ensemble Approach Using Satellite Data and Numerical Models (위성 자료와 수치모델 자료를 활용한 스태킹 앙상블 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho;Shin, Minso;Park, Seohui;Kim, Sang-Min
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1053-1066
    • /
    • 2020
  • Sulfur dioxide (SO2) is primarily released through industrial, residential, and transportation activities, and creates secondary air pollutants through chemical reactions in the atmosphere. Long-term exposure to SO2 can result in a negative effect on the human body causing respiratory or cardiovascular disease, which makes the effective and continuous monitoring of SO2 crucial. In South Korea, SO2 monitoring at ground stations has been performed, but this does not provide spatially continuous information of SO2 concentrations. Thus, this research estimated spatially continuous ground-level SO2 concentrations at 1 km resolution over South Korea through the synergistic use of satellite data and numerical models. A stacking ensemble approach, fusing multiple machine learning algorithms at two levels (i.e., base and meta), was adopted for ground-level SO2 estimation using data from January 2015 to April 2019. Random forest and extreme gradient boosting were used as based models and multiple linear regression was adopted for the meta-model. The cross-validation results showed that the meta-model produced the improved performance by 25% compared to the base models, resulting in the correlation coefficient of 0.48 and root-mean-square-error of 0.0032 ppm. In addition, the temporal transferability of the approach was evaluated for one-year data which were not used in the model development. The spatial distribution of ground-level SO2 concentrations based on the proposed model agreed with the general seasonality of SO2 and the temporal patterns of emission sources.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Synthetic Application of Seismic Piezo-cone Penetration Test for Evaluating Shear Wave Velocity in Korean Soil Deposits (국내 퇴적 지반의 전단파 속도 평가를 위한 탄성파 피에조콘 관입 시험의 종합적 활용)

  • Sun, Chang-Guk;Kim, Hong-Jong;Jung, Jong-Hong;Jung, Gyung-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.207-224
    • /
    • 2006
  • It has been widely known that the seismic piezo-cone penetration test (SCPTu) is one of the most useful techniques for investigating the geotechnical characteristics such as static and dynamic soil properties. As practical applications in Korea, SCPTu was carried out at two sites in Busan and four sites in Incheon, which are mainly composed of alluvial or marine soil deposits. From the SCPTu waveform data obtained from the testing sites, the first arrival times of shear waves and the corresponding time differences with depth were determined using the cross-over method, and the shear wave velocity $(V_S)$ profiles with depth were derived based on the refracted ray path method based on Snell's law. Comparing the determined $V_S$ profile with the cone tip resistance $(q_t)$ profile, both trends of profiles with depth were similar. For the application of the conventional CPTu to earthquake engineering practices, the correlations between $V_S$ and CPTu data were deduced based on the SCPTu results. For the empirical evaluation of $V_S$ for all soils together with clays and sands which are classified unambiguously in this study by the soil behavior type classification index $(I_C)$, the authors suggested the $V_S-CPTu$ data correlations expressed as a function of four parameters, $q_t,\;f_s,\;\sigma'_{v0}$ and $B_q$, determined by multiple statistical regression modeling. Despite the incompatible strain levels of the downhole seismic test during SCPTu and the conventional CPTu, it is shown that the $V_S-CPTu$ data correlations for all soils, clays and sands suggested in this study is applicable to the preliminary estimation of $V_S$ for the soil deposits at a part in Korea and is more reliable than the previous correlations proposed by other researchers.

Analysis of Spatial Characteristics of Vacant House in Consideration of the Modifiable Areal Unit Problem (MAUP) - Focused on the Old Downtowns of Busan Metropolitan City - (공간단위 수정가능성 문제(MAUP)를 고려한 빈집 발생지역의 특성 분석 - 부산광역시 원도심 일대를 대상으로 -)

  • SEOL, Yu-Jeong;KIM, Ji-Yun;KIM, Ho-Yong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.120-132
    • /
    • 2022
  • Recently, the rapid increase in vacant houses in urban areas has caused various problems such as worsening urban landscape, causing safety accidents, crime accidents, and hygiene problems. According to the Statistics Korea Future Population Estimation results, the growth rate of Korean population and households is expected to continue to decrease, which is likely to lead to an increase in the occurrence of vacant houses. If the problem caused by the occurrence of vacant houses is neglected, it causes not only a physical decline such as a deterioration of the residential environment but also a social and economic decline. In order to solve this problem, it is necessary to grasp the spatial distribution characteristics of vacant houses at the local level considering the existence of regional characteristics and spatial influence. Therefore, in this study, in order to measure global spatial autocorrelation, the analysis was conducted centering on the old downtown area of Busan, where there are many vacant houses through Moran's I and Geographically Weighted Regression(GWR). In addition, the distribution of vacant houses in different spatial units in Eup_Myeon_Dong and Census was analyzed to evaluate the possibility of Modifiable Areal Unit Problem(MAUP), which differ in the results of spatial analysis as the spatial analysis units change. As a result of the analysis, the occurrence of vacant houses by Eup_Myeon_Dong in the old downtown area of Busan had spatial heterogeneity, and the spatial analysis results of vacant houses were different as the spatial analysis units were different. Accordingly, in order to understand the exact distribution characteristics of vacant house occurrence, spatial dimensions using the GWR model should be considered, and it is suggested that consideration of the MAUP is necessary.

Estimation of Fresh Weight and Leaf Area Index of Soybean (Glycine max) Using Multi-year Spectral Data (다년도 분광 데이터를 이용한 콩의 생체중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Park, Jun-Woo;Kim, Tae-Yang;Kang, Kyung-Suk;Park, Min-Jun;Baek, Hyun-Chan;Park, Yu-hyeon;Kang, Dong-woo;Zou, Kunyan;Kim, Min-Cheol;Kwon, Yeon-Ju;Han, Seung-ah;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.329-339
    • /
    • 2021
  • Soybeans (Glycine max), one of major upland crops, require precise management of environmental conditions, such as temperature, water, and soil, during cultivation since they are sensitive to environmental changes. Application of spectral technologies that measure the physiological state of crops remotely has great potential for improving quality and productivity of the soybean by estimating yields, physiological stresses, and diseases. In this study, we developed and validated a soybean growth prediction model using multispectral imagery. We conducted a linear regression analysis between vegetation indices and soybean growth data (fresh weight and LAI) obtained at Miryang fields. The linear regression model was validated at Goesan fields. It was found that the model based on green ratio vegetation index (GRVI) had the greatest performance in prediction of fresh weight at the calibration stage (R2=0.74, RMSE=246 g/m2, RE=34.2%). In the validation stage, RMSE and RE of the model were 392 g/m2 and 32%, respectively. The errors of the model differed by cropping system, For example, RMSE and RE of model in single crop fields were 315 g/m2 and 26%, respectively. On the other hand, the model had greater values of RMSE (381 g/m2) and RE (31%) in double crop fields. As a result of developing models for predicting a fresh weight into two years (2018+2020) with similar accumulated temperature (AT) in three years and a single year (2019) that was different from that AT, the prediction performance of a single year model was better than a two years model. Consequently, compared with those models divided by AT and a three years model, RMSE of a single crop fields were improved by about 29.1%. However, those of double crop fields decreased by about 19.6%. When environmental factors are used along with, spectral data, the reliability of soybean growth prediction can be achieved various environmental conditions.

A Study on Estimation of Edible Meat Weight in Live Broiler Chickens (육용계(肉用鷄)에서 가식육량(可食肉量)의 추정(推定)에 관(關)한 연구(硏究))

  • Han, Sung Wook;Kim, Jae Hong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.221-234
    • /
    • 1983
  • A study was conducted to devise a method to estimate the edible meat weight in live broilers. White Cornish broiler chicks CC, Single Comb White Leghorn egg strain chicks LL, and two reciprocal cross breeds of these two parent stocks (CL and LC) were employed A total of 240 birds, 60 birds from each breed, were reared and sacrificed at 0, 2, 4, 6, 8 and 10 weeks of ages in order to measure various body parameters. Results obtained from this study were summarized as follows. 1) The average body weight of CC and LL were 1,820g and 668g, respectively, at 8 weeks of age. The feed to gain ratios for CC and LL were 2.24 and 3.28, respectively. 2) The weight percentages of edible meat to body weight were 34.7, 36.8 and 37.5% at 6, 8 and 10 weeks of ages, respectively, for CC. The values for LL were 30.7, 30.5 and 32.3%, respectively, The CL and LC were intermediate in this respect. No significant differences were found among four breeds employed. 3) The CC showed significantly smaller weight percentages than did the other breeds in neck, feather, and inedible viscera. In comparison, the LL showed the smaller weight percentages of leg and abdominal fat to body weight than did the others. No significant difference was found among breeds in terms of the weight percentages of blood to body weight. With regard to edible meat, the CC showed significantly heavier breast and drumstick, and the edible viscera was significantly heavier in LL. There was no consistent trend in neck, wing and back weights. 4) The CC showed significantly larger measurements body shape components than did the other breeds at all time. Moreover, significant difference was found in body shape measurements between CL and LC at 10 weeks of age. 5) All of the measurements of body shape components except breast angle were highly correlated with edible meat weight. Therefore, it appeared to be possible to estimate the edible meat wight of live chickens by the use of these values. 6) The optimum regression equations for the estimation of edible meat weight by body shape measurements at 10 weeks of age were as follows. $$Y_{cc}=-1,475.581 +5.054X_{26}+3.080X_{24}+3.772X_{25}+14.321X_{35}+1.922X_{27}(R^2=0.88)$$ $$Y_{LL}=-347.407+4.549X_{33}+3.003X_{31}(R^2=0.89)$$ $$Y_{CL}=-1,616.793+4.430X_{24}+8.566X_{32}(R^2=0.73)$$ $$Y_{LC}=-603.938+2.142X_{24}+3.039X_{27}+3.289X_{33}(R^2=0.96)$$ Where $X_{24}$=chest girth, $X_{25}$=breast width, $X_{26}$=breast length, $X_{27}$=keel length, $X_{31}$=drumstick girth, $X_{32}$=tibotarsus length, $X_{33}$=shank length, and $X_{35}$=shank diameter. 7) The breed and age factors caused considerable variations in assessing the edible meat weight in live chicken. It seems however that the edible meat weight in live chicken can be estimated fairly accurately with optimum regression equations derived from various body shape measurements.

  • PDF

A Study on the Observation of Soil Moisture Conditions and its Applied Possibility in Agriculture Using Land Surface Temperature and NDVI from Landsat-8 OLI/TIRS Satellite Image (Landsat-8 OLI/TIRS 위성영상의 지표온도와 식생지수를 이용한 토양의 수분 상태 관측 및 농업분야에의 응용 가능성 연구)

  • Chae, Sung-Ho;Park, Sung-Hwan;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.931-946
    • /
    • 2017
  • The purpose of this study is to observe and analyze soil moisture conditions with high resolution and to evaluate its application feasibility to agriculture. For this purpose, we used three Landsat-8 OLI (Operational Land Imager)/TIRS (Thermal Infrared Sensor) optical and thermal infrared satellite images taken from May to June 2015, 2016, and 2017, including the rural areas of Jeollabuk-do, where 46% of agricultural areas are located. The soil moisture conditions at each date in the study area can be effectively obtained through the SPI (Standardized Precipitation Index)3 drought index, and each image has near normal, moderately wet, and moderately dry soil moisture conditions. The temperature vegetation dryness index (TVDI) was calculated to observe the soil moisture status from the Landsat-8 OLI/TIRS images with different soil moisture conditions and to compare and analyze the soil moisture conditions obtained from the SPI3 drought index. TVDI is estimated from the relationship between LST (Land Surface Temperature) and NDVI (Normalized Difference Vegetation Index) calculated from Landsat-8 OLI/TIRS satellite images. The maximum/minimum values of LST according to NDVI are extracted from the distribution of pixels in the feature space of LST-NDVI, and the Dry/Wet edges of LST according to NDVI can be determined by linear regression analysis. The TVDI value is obtained by calculating the ratio of the LST value between the two edges. We classified the relative soil moisture conditions from the TVDI values into five stages: very wet, wet, normal, dry, and very dry and compared to the soil moisture conditions obtained from SPI3. Due to the rice-planing season from May to June, 62% of the whole images were classified as wet and very wet due to paddy field areas which are the largest proportions in the image. Also, the pixels classified as normal were analyzed because of the influence of the field area in the image. The TVDI classification results for the whole image roughly corresponded to the SPI3 soil moisture condition, but they did not correspond to the subdivision results which are very dry, wet, and very wet. In addition, after extracting and classifying agricultural areas of paddy field and field, the paddy field area did not correspond to the SPI3 drought index in the very dry, normal and very wet classification results, and the field area did not correspond to the SPI3 drought index in the normal classification. This is considered to be a problem in Dry/Wet edge estimation due to outlier such as extremely dry bare soil and very wet paddy field area, water, cloud and mountain topography effects (shadow). However, in the agricultural area, especially the field area, in May to June, it was possible to effectively observe the soil moisture conditions as a subdivision. It is expected that the application of this method will be possible by observing the temporal and spatial changes of the soil moisture status in the agricultural area using the optical satellite with high spatial resolution and forecasting the agricultural production.

Development of Estimation Models for Parking Units -Focused on Gwangju Metropolitan City Condominium Apartments- (주차원단위 산정 모형 개발에 관한 연구 -광주광역시 공동 주택 아파트를 대상으로-)

  • Kwon, Sung-Dae;Ko, Dong-Bong;Park, Je-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.549-559
    • /
    • 2014
  • The rapid expansion of cities led to the shortage of housing in urban areas. The government compensated for this shortage through large scale residential developments that increased the housing supply. The supply of condominium apartments remains above 83% of the entire housing supply, and the proportion of apartments are at a steady increase, at about 50%. Due to the increase, illegally parked cars resulting from the shortage of parking spaces within the apartment complex have become increasingly problematic as they block the transit of emergency vehicles, and heighten the tension among neighboring residents in obtaining a parking space. Especially, the future residents are considered to plan the parking based on the estimated demand for parking. However, the parking unit method utilized to estimate the parking demand accounts for the exclusive use of space, which is believed to be far from the parking demands in reality. The reason for this discrepancy is that, as the number of households decrease, and area of exclusive space is expanded, the planned parking increases. On the other hand, when the number of households increase, and the area of exclusive space is reduced, the planned parking decreases, thus methods to recalculate the parking units based on estimated parking demand is an urgent concern. To estimate the parking units based on condominium apartments, this study first examined the existing research literature, and appointed the field of investigation to collect the necessary data. In addition, field study data and surveys collected and analyzed, in order to identify the problems underlying parking units, and problems regarding the current traffic impact assessment parking unit calculation method were deduced. Through identifying the influential factors on parking demand estimates, and performing a factorial analysis based on the collected data, the variables were selected in relation to the parking demand estimates, to develop the parking unit estimate model. Finally, through comparing and verifying the existing traffic impact assessment parking unit estimate against the newly developed model using collected data, a far more realistic parking unite estimate was suggested, reflecting the characteristics of the residents. The parking unit estimate model developed in this study is anticipated to serve as the guidelines for future parking lot legislature, as wel as the basis to provide a more realistic estimate of parking demands based on the resident characteristics of an apartment complex.

Speed-up Techniques for High-Resolution Grid Data Processing in the Early Warning System for Agrometeorological Disaster (농업기상재해 조기경보시스템에서의 고해상도 격자형 자료의 처리 속도 향상 기법)

  • Park, J.H.;Shin, Y.S.;Kim, S.K.;Kang, W.S.;Han, Y.K.;Kim, J.H.;Kim, D.J.;Kim, S.O.;Shim, K.M.;Park, E.W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.153-163
    • /
    • 2017
  • The objective of this study is to enhance the model's speed of estimating weather variables (e.g., minimum/maximum temperature, sunshine hour, PRISM (Parameter-elevation Regression on Independent Slopes Model) based precipitation), which are applied to the Agrometeorological Early Warning System (http://www.agmet.kr). The current process of weather estimation is operated on high-performance multi-core CPUs that have 8 physical cores and 16 logical threads. Nonetheless, the server is not even dedicated to the handling of a single county, indicating that very high overhead is involved in calculating the 10 counties of the Seomjin River Basin. In order to reduce such overhead, several cache and parallelization techniques were used to measure the performance and to check the applicability. Results are as follows: (1) for simple calculations such as Growing Degree Days accumulation, the time required for Input and Output (I/O) is significantly greater than that for calculation, suggesting the need of a technique which reduces disk I/O bottlenecks; (2) when there are many I/O, it is advantageous to distribute them on several servers. However, each server must have a cache for input data so that it does not compete for the same resource; and (3) GPU-based parallel processing method is most suitable for models such as PRISM with large computation loads.

Estimation of the Value of Road Traffic Noise within Apartment Housing Prices (아파트가격에 내재된 도로교통소음가치 추정)

  • 임영태;손의영
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.19-33
    • /
    • 2001
  • In the developed countries, traffic noise is one of most serious problems faced by people's lives. So the importance of the traffic noise is quite well recognized by the infrastructure planners as well as the people. The traffic noise is valued in monetary terms in some countries and it is reflected in estimating the net present value or benefit/cost ratio. On the contrary, the effects of traffic noise are not reflected in the assessment of infrastructure in most cases in Korea. However, as the income level has been increasing, more people have been becoming to put more importance on their living conditions. The purpose of this paper is to estimate the value of traffic noise in the Seoul metropolitan area. The housing price were surveyed to use the quasi-hedonic price technique. By this way, two housing prices at the same floor level in different 128 complexes in the Seoul metropolitan area were surveyed. the actual traffic noise level was also measured. The differences of housing prices and noise levels were analyzed using the various types of regression models. The value is quite different by size of house. The value of large house is higher than that of small house. Since the income level of people in large house is higher than that in small house. it might be said that value of traffic noise for high income people is higher than that for low income people. Moreover, the increase of 1dB(A) noise affects the house price by about 0.3% in Seoul metropolitan area.

  • PDF