Magazine of the Korean Society of Agricultural Engineers
/
v.22
no.3
/
pp.75-87
/
1980
Most hydro]ogic phenomena are the complex and organic products of multiple causations like climatic and hydro-geological factors. A certain significant correlation on the run-off in river basin would be expected and foreseen in advance, and the effect of each these causual and associated factors (independant variables; present-month rainfall, previous-month run-off, evapotranspiration and relative humidity etc.) upon present-month run-off(dependent variable) may be determined by multiple regression analysis. Functions between independant and dependant variables should be treated repeatedly until satisfactory and optimal combination of independant variables can be obtained. Reliability of the estimated function should be tested according to the result of statistical criterion such as analysis of variance, coefficient of determination and significance-test of regression coefficients before first estimated multiple regression model in historical sequence is determined. But some error between observed and estimated run-off is still there. The error arises because the model used is an inadequate description of the system and because the data constituting the record represent only a sample from a population of monthly discharge observation, so that estimates of model parameter will be subject to sampling errors. Since this error which is a deviation from multiple regression plane cannot be explained by first estimated multiple regression equation, it can be considered as a random error governed by law of chance in nature. This unexplained variance by multiple regression equation can be solved by stochastic approach, that is, random error can be stochastically simulated by multiplying random normal variate to standard error of estimate. Finally hybrid model on estimation of monthly run-off in nonhistorical sequence can be determined by combining the determistic component of multiple regression equation and the stochastic component of random errors. Monthly run-off in Naju station in Yong-San river basin is estimated by multiple regression model and hybrid model. And some comparisons between observed and estimated run-off and between multiple regression model and already-existing estimation methods such as Gajiyama formula, tank model and Thomas-Fiering model are done. The results are as follows. (1) The optimal function to estimate monthly run-off in historical sequence is multiple linear regression equation in overall-month unit, that is; Qn=0.788Pn+0.130Qn-1-0.273En-0.1 About 85% of total variance of monthly runoff can be explained by multiple linear regression equation and its coefficient of determination (R2) is 0.843. This means we can estimate monthly runoff in historical sequence highly significantly with short data of observation by above mentioned equation. (2) The optimal function to estimate monthly runoff in nonhistorical sequence is hybrid model combined with multiple linear regression equation in overall-month unit and stochastic component, that is; Qn=0. 788Pn+0. l30Qn-1-0. 273En-0. 10+Sy.t The rest 15% of unexplained variance of monthly runoff can be explained by addition of stochastic process and a bit more reliable results of statistical characteristics of monthly runoff in non-historical sequence are derived. This estimated monthly runoff in non-historical sequence shows up the extraordinary value (maximum, minimum value) which is not appeared in the observed runoff as a random component. (3) "Frequency best fit coefficient" (R2f) of multiple linear regression equation is 0.847 which is the same value as Gaijyama's one. This implies that multiple linear regression equation and Gajiyama formula are theoretically rather reasonable functions.
International conference on construction engineering and project management
/
2007.03a
/
pp.653-661
/
2007
Overseas construction projects tend to be more complex than domestic projects, being exposed to more external risks, such as politics, economy, society, and culture, as well as more internal risks from the project itself. It is crucial to have an early understanding of the project condition, in order to be well prepared in various phases of the project. This study compares a structural equation model and multiple regression analysis, in their capacity to predict cost performance of international construction projects. The structural equation model shows a more accurate prediction of cost performance than does regression analysis, due to its intrinsic capability of considering various cost factors in a systematic way.
Kim, Won Jae;Park, Chang Kyu;Son, Tran Thai;Phuc, Le Van;Lee, Hyun Jong
International Journal of Highway Engineering
/
v.19
no.5
/
pp.49-58
/
2017
PURPOSES : The objective of this study is to develop a simple regression model in designing the asphalt concrete (AC) overlay thickness using the Mechanistic-empirical pavement design guide (MEPDG) program. METHODS : To establish the AC overlay design equation, multiple regression analyses were performed based on the synthetic database for AC thickness design, which was generated using the MEPDG program. The climate in Seoul city, a modified Hirsh model for determining dynamic modulus of asphalt material, and a new damaged master curve approach were used in this study. Meanwhile, the proposed rutting model developed in Seoul city was then used to calibrate the rutting model in the MEPDG program. The AC overlay design equation is a function of the total AC thickness, the ratio of AC overlay thickness and existing AC thickness, the ratio of existing AC modulus and AC overlay modulus, the subgrade condition, and the annual average daily truck traffic (AADTT). RESULTS : The regression model was verified by comparing the predicted AC thickness, the AADTT from the model and the MEPDG. The regression model shows a correlation coefficient of 0.98 in determining the AC thickness and 0.97 in determining AADTT. In addition, the data in Seoul city was used to validate the regression model. The result shows that correlation coefficient between the predicted and measured AADTT is 0.64. This indicates that the current model is more accuracy than the previous study which showed a correlation coefficient of 0.427. CONCLUSIONS:The high correlation coefficient values indicate that the regression equations can predict the AC thickness accurately.
The energy cost is resulted from the energy use. Its sources are divided into some types and depended on the building use or energy-use type. The energy cost should be affected by the amount of the energy use. The cost could be calculated to consider various factors such as the insulation, heating type, building shape and others. But it can not consider all of the affect factors to the energy cost and need to categorize the factors to the condition for estimating the cost. In this paper, it aimed at providing the estimation model in linear equation and multiple linear regression, utilizing the building exterior condition and management characteristics in apartment housing. Its survey are conducted in two parts of management characteristics and building exterior condition. The correlation analysis is conducted to get rid of the multicolinearity among the inputted factors. The number of linear equation model is 11 and includes the 1st, 2nd and 3rd equation function, power function and others. Among these, it suggested the 2nd and 3rd function and power function in terms of the statistics. In multiple linear regression model, the building volume and management area are inputted to the estimation.
In this study, a empirical equation which can be feasibly used to evaluate minimal track buckling strength without exact numerical analysis is presented. Parameter studies we carried out to investigate the effects of the individual factor on buckling strength. In order to simulate track buckling in the field as precisely as possible, a rigorous buckling model which accounts for all the important parameters is adopted. A empirical equation for prediction of minimal track buckling strength is derived by taking nonlinear regression of data which are obtained from numerical analyses. Its characteristics and applicability are investigated by comparing the results by the presented equation with the one by the equation which was presented in japan, and is frequently using in korea when designing track structure.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.2
/
pp.62-69
/
2016
This paper proposes to select Measure of Performance(MOP) for object attainment in the counterfire operation and deduce the reasonable combination of blue force's hitting resources satisfying MOP's optimal value and regression equation for the object achievement time. Also, in the study-methodological perspective, a series of procedures for drawing the regression equation from the real world is presented. Firstly the model was made by simplifying the weapon-system information of red force and blue force, then the time for object attainment was derived from its simulation. Simulating the model for the counterfire operation was divided into three phases-detection, decision and hitting. The probability method by applying the random numbers were used for detection, fixed constant numbers for decision and hitting. The simulation was repeatedly performed to get the minimum time for the object attainment against the fixed enemy, and it was estimated as the optimal value of simulation. From this result, the optimum combination of blue force's weapon system against the red force and finally, the regression equation were obtained by using the response surface analyzing method in MINITAB. Thereafter this equation was completely verified by using 'the 2-sample t-test.' As a result, the regression equation is suitable.
This paper include the hydrometeorological analyses of evapotranspiration which is import factor concerning the estimate of water budgest over a certain basin. Evapotranspiration model mode by the multiple regression analysis between the evapotranspiration measured on various kinds of ground cover (water, bare soil and lawn) and the other meteorological elements affecting the evapotranspiration process, and the simple regression analysis between the evapo transpiration measured on each ground cover and the evapotranspiration on water and vegetables calculated from the Penman equation. It is expected that the evapotranspiration models are a very useful formulae estimating ten days amounts or a month's amounts.
This study analyzed empirically the same data through SPSS statistic(regression analysis) and AMOS program(structural equation model) used for cause and effect analysis. The result of empirical analysis was as follows. The different outcome of coefficients and p-values were deducted. Especially, in the mediated effect testing, meanwhile, SPSS statistic(regression analysis) pictured mediated effect, AMOS program(structural equation model) did not picture mediated effect on the reject zone of null hypothesis(absolute t-value and C.R.-value were nearby 1.96). Eventually, this study showed that what program used determined the outcomes of coefficients and p-values(In particular, the outcomes were differentiated further in the increasing measurement error) though using the same data.
In this study, regression equation was analyzed to estimate non-point source (NPS) pollutant loads in orchard area. Many factors affecting the runoff of NPS pollutant as precipitation, storm duration time, antecedent dry weather period, total runoff density, average storm intensity and average runoff intensity were used as independent variables, NPS pollutant was used as a dependent variable to estimate multiple regression equation. Based on the real measurement data from 2008 to 2012, we performed correlation analysis among the environmental variables related to the rainfall NPS pollutant runoff. Significance test was confirmed that T-P ($R^2=0.89$) and BOD ($R^2=0.79$) showed the highest similarity with the estimated regression equations according to the NPS pollutant followed by SS and T-N with good similarity ($R^2$ >0.5). In the case of regression equation to estimate the NPS pollutant loads, regression equations of multiplied independent variables by exponential function and the logarithmic function model represented optimum with the experimented value.
To mitigate forest fire damage, it is needed to concentrate suppression resources on the fire having a high probability to become large in the initial stage. The objective of this study is to develop the large fire judgement model which can estimate large fire possibility index between the fire size and the related factors such as weather, terrain, and fuel. The results of logistic regression equation indicated that temperature, wind speed, continuous drought days, slope variance, forest area were related to the large fire possibility positively but elevation has negative relationship. This model may help decision-making about size of suppression resources, local residents evacuation and suppression priority.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.