• 제목/요약/키워드: regenerative effect

검색결과 244건 처리시간 0.018초

심근에 작용하는 수종 약물이 쥐의 심근의 'Regenerative $Ca^{++}$ Release'에 미치는 영향 (Effects of Several Cardioactive Agents on the Regenerative $Ca^{++}$ Release in the Mechanically Disrupted Cardiac cells)

  • 강두희;이중우
    • The Korean Journal of Physiology
    • /
    • 제11권2호
    • /
    • pp.9-16
    • /
    • 1977
  • The present experiment was conducted to see whether or not several cardioactive agents influence the 'regenerative $Ca^{++}$ release' in the mechanically disrupted cardiac cells. The mechanically disrupted cardiac cells were prepared by the method of Kerrick and Best from the ventricle of rat. The tension development of the disrupted cardiac cells was measured with a mechanoelectric transducer (RCA 5734). The results were summarized as follows 1) 2 mM caffeine enhanced the regenerative $Ca^{++}$ release, whereas 2 mM Procaine inhibited the $Ca^{++}$ release as reported by other investigators. 2) Epinephrine at concentrations of $10^{-7},\;10^{-6}\;and\;10^{-5}M$ increased the regenerative $Ca^{++}$ release significantly but showed a poor dose response on the $Ca^{++}$ release. 3) Propranolol showed no effect on the regenerative $Ca^{++}$ release when studied alone. Furthermore, it showed no antagonistic effect on an increased regenerative $Ca^{++}$ release induced by epinephrine. 4) Other cardioactive agents such as acetylcholine, ouabain, isoproterenol and c-AMP at concentrations of $10^{-6}M$ showed no effect on the regenerative $Ca^{++}$ release. From the above results, it may be concluded that the cardioactive actions of these agents are not related directly to the process of regenerative $Ca^{++}$ release.

  • PDF

회생에너지 저장시스템이 제동 브랜딩 안정화에 미치는 영향 (The Effect of Regenerative Energy Storage System on Stabilization of Electro-Pneumatic Braking Blending)

  • 김규중;이근오
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.15-21
    • /
    • 2010
  • Regenerative Energy Storage System(ESS) is a system that saves regenerative energy which generated instantly in the regenerative braking of Electric Multiple Unit(EMU) and disappear, and reuse the stored energy when EMU is in powering. Such system related to a research field of renewable energy which emerged concerning climate change and high oil prices. In the case of existing domestic rolling stock, about 25% to 30% of generated regenerative energy is restored to power source and is regarded as direct factor of raising catenary voltage. Such rapid change of catenary voltage is a cause of the failure of EMU's electronic equipment and lowering its reliability and is also a cause of train's fault occurred by tripping circuit breaker. In this paper, we intend to investigate the effect on blending characteristics of electric-braking and pneumatic-braking whether the regenerative energy storage system is used or not in urban transit DC 1,500V feeding system, while trains run. And we also intend to investigate its effect on stabilization of the blending, fluctuation of catenary voltage and various electric equipments.

군용 직렬형 하이브리드 전기 차량을 위한 회생제동 협조제어 시스템의 압력제어 영향에 관한 연구 (A Study on the Effect of the Pressure Control of Cooperative Control System with Regenerative Brake for a Military SHEV)

  • 정순규;최현석
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.517-525
    • /
    • 2016
  • In this research, the effect of the pressure control of cooperative control system with regenerative brake for a military series hybrid-electric vehicle was studied. A cooperative control system with regenerative brake was developed to maximize regenerative energy from electric traction motors of the vehicle. However, the pressure control method of the system was modified to solve a time delay problem and it deteriorates the performance of the system. A Simulink model including the hybrid-electric components, the cooperative control system with regenerative brake, and the vehicle dynamics was developed and used to find a solution. The regenerative energy ratio with respect to the whole brake energy was increased in this research from less than 60 % to over 80 %.

Reynolds Number Effect on Regenerative Pump Performance in Low Reynolds Number Range

  • Horiguchi, Hironori;Yumiba, Daisuke;Tsujimoto, Yoshinobu;Sakagami, Masaaki;Tanaka, Shigeo
    • International Journal of Fluid Machinery and Systems
    • /
    • 제1권1호
    • /
    • pp.101-108
    • /
    • 2008
  • The effect of Reynolds number on the performance of a regenerative pump was examined in a low Reynolds number range in experiment. The head of the regenerative pump increased at low flow rates and decreased at high flow rates as the Reynolds number decreased. The computation of the internal flow was made to clarify the cause of the Reynolds number effect. At low flow rates, the head is decreased with increasing the Reynolds number due to the decrease of the shear force exerted by the impeller caused by the increase of leakage and hence local flow rate. At higher flow rates, the head is increased with increasing the Reynolds number with decreased loss at the inlet and outlet as well as the decreased shear stress on the casing wall.

교류 전기철도 시스템의 해석에 적합한 조류계산 기법 및 STATCOM을 적용한 전압 강하 개선 연구 (A Study on a New Power Flow Method for Analysis of AC Electric Railway System and Improvement of Voltage Drop Using a STATCOM)

  • 백정명;이병하
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.669-676
    • /
    • 2007
  • This paper presents a new power flow method to analyze the AC electric railway system effectively in both cases of traction and regenerative braking of the trains. The algorithm to easily solve the power flow of the AC electric railway system with the trains of regenerative braking from the system without a train of regenerative braking is derived. Using this new power flow method, the voltage characteristics of a typical AC electric railway system is easily analyzed in both cases of traction and regenerative braking of the trains. We show that the presented method can be applied effectively in order to analyze the AT-fed AC electric railway system in both cases of traction and regenerative braking of the trains. A STATCOM(Static Synchronous Compensator) is applied to the system in order to improve the voltage drop problem and this case is also analyzed to show the effect of STATCOM.

수평형 재생증발식 냉방기의 성능시험 (Performance Test for a Horizontal Regenerative Evaporative Cooler)

  • 송귀은;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.621-626
    • /
    • 2006
  • Regenerative evaporative cooling is known as an environment-friendly and energy efficient cooling method. A regenerative evaporative cooler (REC) consisting of dry and wet channels is able to cool down the air stream below the inlet wet-bulb temperature. In the regenerative evaporative cooler, the cooling effect is achieved by redirecting a portion of the air flown out of the dry channel into the wet channel and spraying water onto the redirected air. In this study, a horizontal regenerative cooler is considered. In the horizontal regenerative cooler, the flow direction of evaporating water has a right angle to the flow direction of supply air. This difference was investigated with visualization technique and simplified 2-module performance test was done in a thermo-environment chamber. Optimum design configuration is changed due to the wet channel which are easily fully covered with evaporating water and block the air flow inside the channel. Applying the optimized fin configuration design with the highly wetting surface treatment, a regenerative evaporative cooler was fabricated and tested to Identify the cooling performance improvement and operation characteristics. From the experimental results at the intake condition of $32^{\circ}C$ and 50% RH, the supply temperature was measured to be around $23.4^{\circ}C$. The cooling effectiveness based on the inlet dewpoint temperature was evaluated 73% which is almost close to the design expectation.

  • PDF

도시철도차량의 회생제동력 분담 효과 분석 (Analysis of the Regenerative Braking Effect to the Urban Transit Vehicles)

  • 우종혁;이주
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1900-1906
    • /
    • 2016
  • Recent energy efficiency policy of green growth for stable power supply is required. Urban transit vehicles is limited to reduce the use of power without reducing the number of runs. Accordingly, when urban rail vehicles is braking, the occurrence of regenerative power is systemically maximized for the purpose of saving energy. As a result when it is braking, the generated power efficiently is used and looking for a way to reduce the electrical energy. In this paper, the brake control system of the Subway Line 3 is analyzed the effect to meet the required regenerative braking produced electricity through minimizing air braking force of service braking.

제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향 (Effects of Individual Components on the System Performance in a Desiccant Cooling System)

  • 장영수;이대영
    • 설비공학논문집
    • /
    • 제19권10호
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

A Study on Peak Power Reduction using Regenerative Energy in Railway Systems through DC Subsystem Interconnection

  • Jung, Seungmin;Lee, Hansang;Kim, Kisuk;Jung, Hosung;Kim, Hyungchul;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1070-1077
    • /
    • 2013
  • Owing to the consistent increase in energy efficiency issues, studies for improving regenerative energy utilization have been receiving attention in the Urban DC railway systems, where currently, the utilization of regenerative energy is low due to the lack of a specific plan for using this energy. The regenerative energy in railway systems has a low efficiency problem which results in the increase of the catenary voltage and a possibility to create problems to the electrical devices connected to the system. This paper deals with the power integration of large urban railway subsystems to improve regenerative energy utilization where the railway subsystems are integrated with other railway subsystems to improve the energy efficiency. Through the case studies, to find the realistic effect of integrated operation, the Seoul Metro subsystems, namely Line 5 and Line 7, has been applied. Also, evaluation for the electricity cost saving has been performed by using KEPCO electricity cost table.

Fermented Colostrum Whey Upregulates Aquaporin-3 Expression in, and Proliferation of, Keratinocytes via p38/c-Jun N-Terminal Kinase Activation

  • Seo, Sang-Ah;Park, Hyun-Jung;Han, Min-Gi;Lee, Ran;Kim, Ji-Soo;Park, Ji-Hoo;Lee, Won-Young;Song, Hyuk
    • 한국축산식품학회지
    • /
    • 제41권5호
    • /
    • pp.749-762
    • /
    • 2021
  • Colostrum, which contains various immune and growth factors, aids wound healing by promoting keratinocyte proliferation. Aquaporins (AQPs) are small, hydrophobic membrane proteins that regulate cellular water retention. However, few studies have examined the effect of processed colostrum whey on AQP-3 expression in human skin cells. Here, we investigated the effect of milk, colostrum, fermented milk, and fermented colostrum whey on AQP-3 expression in keratinocyte HaCaT cells. Concentrations of 100-400 ㎍/mL of fermented colostrum whey were found to induce HaCaT cell proliferation. AQP-3 was found to be expressed exclusively in HaCaT cells. AQP-3 expression was significantly increased in 100 ㎍/mL fermented colostrum whey-treated cells compared with that in controls. Moreover, fermented colostrum increased p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) phosphorylation, but not ERK1/2 phosphorylation. Thus, our results suggest that fermented colostrum whey increased AQP-3 expression in, and the proliferation of, keratinocytes via JNK and p38 MAPK activation.