• Title/Summary/Keyword: refrigerant gas

Search Result 213, Processing Time 0.022 seconds

Reinforcement of Refrigerant Gas Regulations in EU and Implications for Carbon Neutrality (EU의 냉매가스 규제 강화와 탄소중립에의 시사점)

  • Dong Koo Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.777-799
    • /
    • 2022
  • This study examined the latest EU regulatory strengthening trends for refrigerant gases with very large global warming potential (GWP) and derived implications for carbon neutrality. The European Commission recently unveiled an amendment that significantly strengthens the F-gas Regulation. This study presented the meaning of the main contents related to refrigerants in the amendment by comparing them with the current regulations. The main contents of the amendment include drastically reducing the maximum amount of HFCs that can be placed on the market, strengthening regulations related to HFCs allocation, adding products and equipment that use high GWP refrigerants, adding regulated F-gas and updating the GWP of existing gases, and other stricter regulatory designs. This movement of the EU will affect the policy stance of advanced countries such as the United States and Japan, and Korea's policy will also be further strengthened. Therefore, it will be inevitable for related industries to change to next-generation refrigerant gas. Meanwhile, this study also analyzed the latest policy trends related to per- and polyfluoralkyl substances (PFAS) regulation, which were not noted in previsou studies on refrigerants and F-gas. If PFAS's registration of REACH restricted substances, which are being promoted by five European countries, is made, it will have a very big impact on the industry regarding refrigerant gas. In addition, it will be inevitable to thoroughly review each country's greenhouse gas reduction strategies related to F-gas materials, including refrigerants.

Performance Improvement on the Re-Liquefaction System of Ethylene Carrier using Low-Global Warming Potential Refrigerants (Low - Global Warming Potential 냉매를 이용한 에틸렌 수송선의 재액화 시스템 성능개선)

  • Ha, Seong-Yong;Choi, Jung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.415-420
    • /
    • 2018
  • The development of sail gas has increased the production of ethane as well as natural gas. The decline in the market price for ethane has led to a change in the petroleum-based ethylene production process into an ethane-based ethylene production process and an increase in the ethane/ethylene trade volume. Large-scale ethane/ethylene carrier have been needed due to an increase in long-distance trade from the US, and cargo type change have leaded to consider a liquefaction process to re-liquefy Boil-Off gas generated during the voyage. In this paper, the liquefaction system of Liquefied Ethane Gas carrier was evaluated with Low-GWP (Low-Global Warming Potential) refrigerant and process parameters, Boil-Off Gas pressure and expansion valve outlet pressure, were optimized. Low-GWP refrigerants were propane (R290), propylene(R1270), carbon dioxide(R744) was considered at two type of liquefaction process such as Linde and cascade cycle. The results show that the optimal pressure point depends on the individual refrigerant and the highest liquefaction efficiency of carbon dioxide (R744) - propane (R290) refrigerant.

Study on Chemical Stabilities with R-1234yf Refrigerant of Polyol Ester Refrigerant Oil for Electric Vehicles (전기 자동차용 폴리올 에스테르계 냉동기유의 R-1234yf 냉매와의 적합성 연구)

  • Hong, J.S.;Chung, K.W.;Kim, N.K.;Shin, J.H.;Kim, Young Woon;Lee, E.H.;Go, B.S.;Hwang, S.Y.
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.139-146
    • /
    • 2020
  • Global warming has led to an increase in demand of eco-friendly vehicles, such as electric cars, for reducing greenhouse gas emissions, and especially, regulating carbon dioxide generation. In addition, electric vehicles are equipped with an electric drive-type hermetic scroll compressor and a refrigerant, which exhibit current and future trends of using environmentally friendly refrigerants, including R-1234yf. In this study, polyol ester-based refrigeration oils are prepared via condensation esterification of polyol and fatty acids. The oils can be combined with R-1234yf refrigerant for applications in air conditioning and cooling systems of electric vehicles. The structure of synthetic polyol esters is confirmed via 1H-NMR and FT-IR spectrum analysis, and the composition of the polyol ester is analyzed via gas chromatogram analysis. Furthermore, kinematic viscosity, viscosity index, total acid value, pour point, and color are analyzed as fundamental physical properties of the synthetic polyol esters. The compatibility and chemical stability of the synthetic polyol ester combined with the R-1234yf refrigerant are obtained via high temperature and high pressure oil-resistant refrigerant tests. The changes in the oil color and catalyst activity are observed before and after the experiment to determine whether it is suitable as a refrigerator oil.

A Study on the Additives of mixed Gas charged in Thermostatic Bulb for Expansion Valve (팽창밸브 개폐용 감온통 혼합가스의 첨가제 연구)

  • Kim, Si-Young;Ju, Chang-Sik;Koo, Su-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.126-132
    • /
    • 2014
  • The P-T characteristics of mixed refrigerant in thermostatic expansion valve sensing bulb were studied using R-134a and R-410A refrigerant. The characteristics of mixed refrigerant were investigated according to pressure variation and the variation of composition ratio of R-134A and R-410A in the temperature range of $-15^{\circ}C{\sim}15^{\circ}C$. The Thermodynamic characteristic values of the mixed refrigerants were identified using the characteristic value analysis program of mixed refrigerant(Refrop v9.0, NIST). The P-T characteristics in the case of the mixing ratio of 90:10 for R-410A and R-134A were the same result as R-22. And the physical properties showed similar results with R-22. The Maximum operating pressure(MOP) of mixed refrigerant showed a tendency to decrease with decreasing the mixing ratio of additive gases($N_2$ or He) gases. The characteristics in the case of the mixing ratio of 80:1 for mixed refrigerant and additive gases were the similar result as Reference refrigerant.(R-22 MOP, Sporlan company) In addition $N_2$ and He, both showed the same results. It was able to confirm that a MOP on the thermostatic expansion valve sensing bulb can be maintained by adjusting the mixing ratio of mixed refrigerant gases and additive gases.

Experimental Study of Characteristics on Double Heat Exchange Pipe Used Separation Type Air-Conditioner (분리형 에어컨용 2중 열교환 배관 특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2006
  • In this study, the ability for the function of double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for the circulating of liquid of high temperature and high pressure and low temperature and low pressure at the same time is presented. And in this double pipe, liquid pipe of high temperature and pressure is used to connect condenser and expansion valve and gas pipe of low temperature is used to connect evaporator and compressor. Also, when liquid refrigerant of high temperature and gas refrigerant of low temperature is circulated by reversed flow in the double pipe. The contribution of liquid gas heat exchange pipe is studied by comparison of the effect of heat transfer by temperature difference when liquid pipe and gas pipe is installed separately.

  • PDF

The heat transfer and pressure drop characteristics of $CO_2$ during supercritical region in a horizontal tube (초임계 영역에서 수평관내 $CO_2$ 열전달과 압력강하)

  • 이동건;오후규;김영률;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.500-508
    • /
    • 2004
  • The heat transfer coefficients during gas cooling process of carbon dioxide in a horizontal tube were investigated. The experiments are conducted without oil in the refrigerant loop. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, and a gas cooler(test section). The water loop consists of a variable-speed pump, an isothermal tank, and a flow meter. The gas cooler is a counterflow heat exchanger by cooled water flowing in the annulus. The $CO_2$ flows in the horizontal stainless steel tube. which is 9.53mm in O.D. and 7.75mm in I.D. The gas cooler is 6 [m] in length. which is divided into 12 subsections, respectively. The experimental conditions considered in the study are following range of variables : refrigerant temperature is between 20 and $100^{\circ}C$. mass fluxes ranged from 200 to 400kg/($m^2$.s), average pressure varied from 7.5 to 10.0MPa. The main results were summarized as follows : The friction factors of $CO_2$ in the gas cooler show a relatively good agreement with those predicted by Blasius' correlation. The local heat transfer coefficient in the gas cooler has compared with most of correlations, which are the famous ones for forced convection heat transfer of turbulent flow. The results show that the local heat transfer coefficient of gas cooler agrees well with the correlation by Bringer-Smith except that at the region near pseudo critical temperature. while that at the near pseudo critical temperature is higher than the correlation.

Numerical analysis on the impeller of chiller compressor using refrigerant R12 (R12 냉매를 이용한 냉동압축기 임펠러 유동해석)

  • Eum, Hark-Jin;Kang, Shin-Hyoung
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.696-701
    • /
    • 2001
  • The performance and the internal flow of the impeller of the centrifugal chiller compressor with refrigerant R12 as working fluid were studied numerically, using CFD code, CFX-Tascflow, which is commercially available. In this numerical study, the thermodynamic and transport properties of the refrigerant gas were generated by the property program of NIST and linked with main program to extend the capability of the code to refrigerant gases. Numerical study was applied to several mass flow rates near the design mass flow rate at constant rotating speed. Overall performance and flow characteristics of the impeller at impeller exit were investigated. The results were physically reasonable and showed good agreement with experimental measurement at the design flow rate.

  • PDF

Performance analysis of the reciprocating compressor with hydrocarbon refrigerant mixtures, R290/R600a (탄화수소계(R290/R600a) 혼합냉매를 적용한 왕복동형 압축기 성능 해석)

  • 김종헌;정연구;박경우;박희용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.270-280
    • /
    • 1999
  • A performance analysis simulation program that can be applied to a hermetic reciprocating compressor with various refrigerants has been developed. For the numerical analysis, the passage of refrigerant in compressor is subdivided into control volumes. Instead of the ideal gas assumption, CSD equation of state is applied to calculate the thermodynamic properties of refrigerants. To verify the validity of developed program, the result has been compared with the experimental data served by the compressor supplier. The performance of each refrigerant and the possibility of direct application are estimated by applying R12, 134a, R290, R600a and R290/R600a mixture to an existing compressor. Also, parametric study for various crank rotating speeds and the mole fractions of refrigerant has been performed.

  • PDF

Fugitive Emission Characteristics of HFC-134a from Reefer Container (냉동컨테이너에서의 HFC-134a 탈루배출 특성에 대한 연구)

  • Kim, Eui-Kun;Kim, Seungdo;Lee, Young Phyo;Byun, Seokho;Kim, Hyerim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.110-118
    • /
    • 2014
  • This paper addresses the fugitive emission factors of Reefer Container at use-phase and disposal-phase. The residual quantities and operation time of thirty nine Container were weighed, using a commercial recover of refrigerants to determine the emission factors at the use-phase. The emission factor at the disposal-phase, refrigerant is accomplished has not recycled, the residual rate was assumed that the emission factor. The average residual rate of thirty nine Container is determined to be $70.8{\pm}4.0%$. The emission factor at the use-phase is estimated to be $4.9{\pm}0.9%/yr$ in the case of using average age of 8.1 years and the average residual rate determined here. We estimate 162.7 g/yr for the average emission quantity of refrigerant per operating Container, while 2038.1 g for that per waste Container. Since the chemical compositions of refrigerant of waste Container were the same as those of new refrigerant, it is expected that the refrigerant recovered from waste Container can be reused for refrigerant.

Case Studies for SMR Natural Gas Liquefaction Plant by Capacity in Small Scale Gas Wells through Cost Analysis (소규모 가스전 규모에 따른 SMR 천연가스 액화 플랜트 용량별 비용 분석 사례연구)

  • Lee, Inkyu;Cho, Seungsik;Lee, Seungjun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.46-51
    • /
    • 2016
  • Natural gas liquefaction process which spends a huge amount energy is operated under cryogenic conditions. Thus, many researchers have studied on minimizing energy consumption of LNG plant. However, a few studied for cost optimization have performed. This study focused on the cost analysis for the single mixed refrigerant (SMR) process, one of the simplest natural gas liquefaction process, which has different capacity. The process capacity is increased from 1 million ton per annum (MTPA) to 2.5 MTPA by 0.5 MTPA steps. According to the increase of plant size, only flow rate of natural gas and mixed refrigerant are increased and other operating conditions are fixed. Aspen Economic Evaluator(v.8.7) is used for the cost analysis and six tenths factor rule is applied to obtain multi stream heat exchanger cost data which is not supplied by Aspen Economic Evaluator. Moreover, the optimal plant sizes for different sizes of gas wells are found as the result of applying plant cost to small scale gas wells, 20 million ton (MT), 40 MT, and 80 MT. Through this cost analysis, the foundation is built to optimize LNG plant in terms of the cost.