• 제목/요약/키워드: refinement-recovery

검색결과 47건 처리시간 0.026초

마그네슘의 등통로각압축 시 파괴 및 기계적 특성에 미치는 공정온도 효과 (Effect of Equal Channel Angular Pressing Temperature on the Fracture and Mechanical Properties of Magnesium)

  • 윤승채;복천희;곽은정;정영기;김택수;김형섭
    • 소성∙가공
    • /
    • 제17권1호
    • /
    • pp.13-18
    • /
    • 2008
  • Mg and Mg alloys are promising materials for light weight high strength applications. In this paper, grain refinement of pure Mg using severe plastic deformation was tried to enhance the mechanical properties of the hard-to-deform metallic material. The microstructure and the mechanical properties of Mg processed by equal channel angular pressing(ECAP) at various processing temperatures were investigated experimentally. ECAP with channel angle of $90^{\circ}$ and corner angle of $0^{\circ}$ was successful at $300^{\circ}C$ without fracture of the samples during the processing. The hardness of the ECAP processed Mg decreased with increasing ECAP processing temperature. The effect of temperature on the hardness and microstructure of the ECAP processed Mg were explained by the dislocation glide in the basal plane and non-basal slip systems and by the dynamic recrystallization and recovery.

버블패킹방법을 이용한 2차원 자동격자 생성 및 재구성 알고리듬 개발(I) -선형 해석- (Development of Algorithm for 2-D Automatic Mesh Generation and Remeshing Technique Using Bubble Packing Method (I) -Linear Analysis-)

  • 정순완;김승조
    • 대한기계학회논문집A
    • /
    • 제25권6호
    • /
    • pp.1004-1014
    • /
    • 2001
  • The fully automatic algorithm from initial finite element mesh generation to remeshing in two dimensional geometry is introduced using bubble packing method (BPM) for finite element analysis. BPM determines the node placement by force-balancing configuration of bubbles and the triangular meshes are made by Delaunay triangulation with advancing front concept. In BPM, we suggest two node-search algorithms and the adaptive/recursive bubble controls to search the optimal nodal position. To use the automatically generated mesh information in FEA, the new enhanced bandwidth minimization scheme with high efficiency in CPU time is developed. In the remeshing stage, the mesh refinement is incorporated by the control of bubble size using two parameters. And Superconvergent Patch Recovery (SPR) technique is used for error estimation. To verify the capability of this algorithm, we consider two elasticity problems, one is the bending problem of short cantilever beam and the tension problem of infinite plate with hole. The numerical results indicate that the algorithm by BPM is able to refine the mesh based on a posteriori error and control the mesh size easily by two parameters.

Effect of process parameters on the recovery of thorium tetrafluoride prepared by hydrofluorination of thorium oxide, and their optimization

  • Kumar, Raj;Gupta, Sonal;Wajhal, Sourabh;Satpati, S.K.;Sahu, M.L.
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1560-1569
    • /
    • 2022
  • Liquid fueled molten salt reactors (MSRs) have seen renewed interest because of their inherent safety features, higher thermal efficiency and potential for efficient thorium utilisation for power generation. Thorium fluoride is one of the salts used in liquid fueled MSRs employing Th-U cycle. In the present study, ThF4 was prepared by hydro-fluorination of ThO2 using anhydrous HF gas. Process parameters viz. bed depth, hydrofluorination time and hydrofluorination temperature, were optimized for the preparation of ThF4 in a static bed reactor setup. The products were characterized with X-Ray diffraction and experimental conditions for complete conversion to ThF4 were established which also corroborated with the yield values. Hydrofluorination of ThO2 at 450 ℃ for half an hour at a bed depth of 6 mm gave the best result, with a yield of about 99.36% ThF4. No unconverted oxide or any other impurity was observed. Rietveld refinement was performed on the XRD data of this ThF4, and Chi2 value of 3.54 indicated good agreement between observed and calculated profiles.

강가공에 의한 Nb함유 저탄소강의 오스테나이트 재결정과 페라이트 미세화 (Austenite Recrystallization and Ferrite Refinement of a Nb Bearing Low Carbon Steel by Heavy Hot Deformation)

  • 이상우
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.3-11
    • /
    • 2005
  • Using various thermo-mechanical schedules characterized by varying reheating temperature, deformation temperature and strain, the austenite recrystallization and ferrite refinement of a Nb bearing low carbon steel(0.15C-0.25Si-1.11Mn-0.04Nb) were investigated. For single pass heavy deformations at $800^{\circ}C$, the 40% deformed austenite was not recrystallized while the 80% deformed one was fully recrystallized. Ferrite grains formed in the 80% deformed specimen was not very small compared with those in the 40% deformed specimen, which implied the recrystallized austenite was not more beneficial to ferrite refinement than the non-recrystallized one. In case of deformation in low temperature austenite region, a multi-pass deformation made finer ferrites than a single-pass deformation, as the total reduction was the same, due to more ferrite nucleation sites in the non-recrystallization of austenite for multi-pass deformation. When specimen was deformed at $775^{\circ}C$ that was $10^{\circ}C$ higher than $Ar_3$, the ferrite of about $1{\mu}m$ was formed through deformation induced ferrite transformation(DIFT), and the amount of ferrite was increased with increasing reduction. Dislocation density was very high and no carbides were observed in DIFT ferrites, presumably due to supersaturated carbon solution. By deformation in two phase(50% austenite+50% ferrite) region the very refined ferrite grains of less than $1{\mu}m$ were formed certainly by recovery and recrystallization of deformed ferrites and, a large portion of ferrites were divided by subgrain boundaries with misorientation angles smaller than 10 degrees.

ISFRNet: A Deep Three-stage Identity and Structure Feature Refinement Network for Facial Image Inpainting

  • Yan Wang;Jitae Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권3호
    • /
    • pp.881-895
    • /
    • 2023
  • Modern image inpainting techniques based on deep learning have achieved remarkable performance, and more and more people are working on repairing more complex and larger missing areas, although this is still challenging, especially for facial image inpainting. For a face image with a huge missing area, there are very few valid pixels available; however, people have an ability to imagine the complete picture in their mind according to their subjective will. It is important to simulate this capability while maintaining the identity features of the face as much as possible. To achieve this goal, we propose a three-stage network model, which we refer to as the identity and structure feature refinement network (ISFRNet). ISFRNet is based on 1) a pre-trained pSp-styleGAN model that generates an extremely realistic face image with rich structural features; 2) a shallow structured network with a small receptive field; and 3) a modified U-net with two encoders and a decoder, which has a large receptive field. We choose structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), L1 Loss and learned perceptual image patch similarity (LPIPS) to evaluate our model. When the missing region is 20%-40%, the above four metric scores of our model are 28.12, 0.942, 0.015 and 0.090, respectively. When the lost area is between 40% and 60%, the metric scores are 23.31, 0.840, 0.053 and 0.177, respectively. Our inpainting network not only guarantees excellent face identity feature recovery but also exhibits state-of-the-art performance compared to other multi-stage refinement models.

Ultra-fine Grained Aluminum Alloy Sheets fabricated by Roll Bonding Process

  • 김형욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Ultra-fine grained (UFG) Al alloys, which have submicron grain structures, are expected to show outstanding high strength at ambient temperature and excellent superplastic deformation at elevated temperatures and high strain rate. In order to get the UFG microstructure, various kind of severe plastic deformation (SPD) processes have been developed. Among these processes, accumulative roll bonding (ARB) process is a promising process to make bulky Al sheets with ultrafine grained structure continuously. The purpose of the present study is to clarify the grain refinement mechanism during the ARB process and to investigate on the effects of ultra-fine grained structure on the mechanical properties. In addition, UFG AA8011 alloy (Al-0.72wt%Fe-0.63wt%Si) manufactured by the ARB had fairly large tensile elongation, keeping on the strength. In order to clarify the reason for the increase of elongation in the UFG AA8011 alloy, detailed microstructural and crystallographic analysis was performed by TEM/Kikuchi-line and SEM/EBSP method. The unique tensile properties of the UFG AA8011 alloy could be explained by enhanced dynamic recovery at ambient temperature, owing to the large number of high angle boundaries and the Al matrix with high purity.

  • PDF

극저온 정제시스템의 품질관리를 위한 SF6 가스 분석방법 개선 (Improved sulfur hexafluoride(SF6) gas analysis method for quality management of cryogenic refinement system)

  • 이정은;조민;이원석
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제8권1호
    • /
    • pp.37-41
    • /
    • 2022
  • Because sulfur hexafluoride(SF6) is classified as one of the six major greenhouse gases, SF6 handling in power plant such as recovery, purification, and reuse is considered to be important. KEPCO has focused to develop the advanced recovery and purification technology of SF6 reuse. SF6 analysis includes the on-site analyses and on-line analyzer; i.e., (1) on-site analysis has an error rate of ±0.5% and (2) on-line analysis has an error rate of ±0.1%, which is possible to adjust operating conditions and to make the work more conveniently by analyzing SF6 concentration before and after purification step. This paper presents an online analysis method in the SF6 purification and reuse system. In addition, the analysis results and quality guarantees for each section of the analysis system were presented.

차량 급가속시 운전성 향상을 위한 제어로직 개선에 관한 연구 (A Study of the Control Logic Development of Driveability Improvement in Vehicle Acceleration Mode)

  • 최윤준;송해박;이종화;조한승;조남효
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.101-116
    • /
    • 2002
  • Modern vehicles require a high degree of refinement, including good driveability to meet customer demands. Vehicle driveability, which becomes a key decisive factor for marketability, is affected by many parameters such as engine control and the dynamic characteristics in drive lines. Therefore, Engine and drive train characteristics should be considered to achieve a well balanced vehicle response simultaneously. This paper describes analysis procedures using a mathematical model which has been developed to simulate spark timing control logic. Inertia mass moment, stiffness and damping coefficient of engine and drive train were simulated to analyze the effect of parameters which were related vehicle dynamic behavior. Inertia mass moment of engine and stiffness of drive line were shown key factors for the shuffle characteristics. It was found that torque increase rate, torque reduction rate and torque recovery timing and rate influenced the shuffle characteristics at the tip-in condition for the given system in this study.

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

산후 여성의 기능 상태에 관한 연구 (A Study on Functional Status after Childbirth under the Sanhujori)

  • 유은광
    • 여성건강간호학회지
    • /
    • 제5권3호
    • /
    • pp.410-419
    • /
    • 1999
  • This study sought to figure out women's functional status after childbirth under the Sanhujori. Functioal status was defined as the women's readiness to assume infant care responsibilities and resume her usual activities including household, social and community, self-care and occupational activity. A convenience sample of 211 women who are in the postpartal period of the range from 1 week to 3 months above and residing in Seoul. Korea was studied from January, 1997 to December, 1998 for two years. Mean age of respondents was 29.9 years and mean of the present postpartal period was 7.5 weeks. The present postpartal period was of 5-8 weeks 26.5%, 3-4weeks 26.1%, 9-12 week 23.7% and below 2 weeks 7.1%, 32.7% of women had a job and the mean period of return to job was 2.76 weeks. During Sanhujori the non professional care giver was family members from women's maiden home 73.5% and only 2% of husband. The period women needed for the recovery from now was 5.39 weeks and it means that women need 12.9weeks for recovery after childbirth. For the present subjective health status after childbirth, bad was 20.2%, good 18.3 and average 61.5% and for the recovery status, completely recovered 29.5%, slightly 61.8% and rarely 8.7%. The mean of functional status at the 7.5weeks was baby care activity 3.65, household 2.57, self-care 2.46, occupational 2.44 and social 1.53 in rank. Except baby care the functional status was generally low or very low. The related factors to the functional status were the period and subjective evaluation of Sanhujori women experienced, the present period of postpartum, and subjective feeling of recovery. This result strongly reflects the effects of Sanhujori culture and Sanhujori per se on women's postpartal life including functional status and reconfirmed the relationship between health status and the experience of Sanhujori after delivery as the previous findings from various study showed. It provides a challenge to the professional care givers to research further on the effects of Sanhujori on the health status, health recovery after abortion or delivery from the various aspects through the cross-sectional and longitudinal research for the refinement of the reality of Sanhujori not only as cultural phenomenon but as an inseparable factor influencing in women's postpartal healthy adaptation and for the appropriateness of intervention and quality of care for desirable health outcome.

  • PDF