• 제목/요약/키워드: redundant robot manipulator

검색결과 61건 처리시간 0.032초

장애물이 있는 환경하에서 여유자유도 로보트의 지능제어 방법 (Intelligent Control of Redundant Manipulator in an Environment with Obstacles)

  • 현웅근;서일홍
    • 대한전기학회논문지
    • /
    • 제41권5호
    • /
    • pp.551-561
    • /
    • 1992
  • A neural optimization network and fuzzy rules are proposed to control the redundant robot manipulators in an environment with obstacle. A neural optimization network is employed to solve the optimization problem for resolved motion control of redundant robot manipulators in an environment with obstacle. The fuzzy rules are proposed to determine the weights of neural optimization networks to avoid the collision between robot manipulators and obstacle. The inputs of fuzzy rules are the resultant distance and change of the distance and sum of the changes by differential motion of each joint. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision aboidance of each joint. To show the validities of the proposed method, computer simulation results are illustrated for the redundant robot of the planar type with three degrees of freedom.

여유자유도를 갖는 로보트의 관절변수의 위치 및 속도 제한범위 회피를 위한 기구학적 제어방법 (A Kinematic Control Method of Redundant Manipulator for the Avoidance of Joint Position and Velocity Limits)

  • 한석균;서일홍;임준홍
    • 대한전자공학회논문지
    • /
    • 제25권6호
    • /
    • pp.598-605
    • /
    • 1988
  • A kinematic control method for the redundant robot manipulator is proposed, where redundancy is utilized to avoid the limit of joint positions and velocities. For the given tadk, the joint positions are obtained in such a way that each joint is placed as close to its center point as possible by considering the velocity limit. The robot is, therefore, controlled so that the joints move with the acceptable velocities and lie within the reachable ranges. To show the validities of the proposed method, two examples are illustrated by computer simulations for the RHINO-XR robot with sliding base.

  • PDF

여유자유도 실링 로봇에서의 최적 경로 계획 (Optimal Path Planning in Redundant Sealing Robots)

  • 성영휘;주백석
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1911-1919
    • /
    • 2012
  • In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.

OBSTACLE-AVOIDANCE ALGORITHM WITH DYNAMIC STABILITY FOR REDUNDANT ROBOT MANIPULATOR WITH FRUIT-ILARVESTING APPLICATIONS

  • Ryu, Y.S.h;Ryu, K.H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.1063-1072
    • /
    • 1996
  • Fruit harvesting robots should have more diversity and flexibility in the working conditions and environments than industrial robots. This paper presents an efficient optimization algorithm for redundant manipulators to avoid obstacles using dynamic performance criteria, while the optimization schemes of the previous studies used the performance criteria using kinematic approach. Feasibility and effectiveness of this algorithm were tested through simulations on a 3-degrees-of-freedom manipulator made for this study. Only the position of the end-effector was controlled , which requires only three degrees of freedom. Remaining joints, except for the wrist roll joint, which does not contribute to the end-effector linear velocity, provide two degrees of redundancy. The algorithm was effective to avoid obstacles in the workspace even through the collision occurred in extended workspace, and it was found be to a useful design tool which gives more flexibility to design conditions nd to find the mechanical constraints for fruit harvesting robots.

  • PDF

인간형 4자유도 로봇팔 제어 시스템 (A Control System of 4 d.o.f Human Arm type Redundant Robot)

  • 황승리;박재우;나상민;현웅근
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.301-303
    • /
    • 2018
  • 서비스 로봇에서는 산업용 로봇에서 많이 사용하던 로봇 머니퓰레이터 대신에 여유자유도형 인간형 로봇 팔이 사용어야한다. 여유자유도 인간형 로봇팔은 산업용 로봇 팔에 비하여 자유도 수가 많아서 특이점 및 장애물 회피에 더욱 우수한 성능을 가지고 있어 정해지지 않은 복잡한 환경에서 동작해야 하는 서비스 로봇에 적합하다. 여유 자유도 로봇 팔의 제어 문제는 구동 알고리즘에서 역기구학 및 자코비언을 사용하기 때문에 복잡한 연산 및 그 계산량이 많다는 것이 문제가 된다. 본 연구에서는 이러한 문제를 해결하기 위해 수치해석적인 역기구학 해법 및 가중 의사역 행열 제어 알고리즘을 제안하며 이를 시스템으로 구현하여 실험으로 효용성을 입증하였다.

  • PDF

Analysis on a Minimum Infinity-norm Solution for Kinematically Redundant Manipulators

  • Insoo Ha;Lee, Jihong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권2호
    • /
    • pp.130-139
    • /
    • 2002
  • In this paper, at first, we investigate existing algorithms for finding the minimum infinity-norm solution of consistent linear equations and then propose a new algorithm. The proposed algorithm is intended to includes the advantages of computational efficiency as well as geometric explicitness. As a practical application example, optimum trajectory planning for redundant robot manipulators is considered. Also, an efficient approach avoiding discontinuity in trajectory is proposed by resolving the non-uniqueness problem of minimum infinity-norm solution. To be specific, the proposed method for checking possible discontinuity does not need any other algorithms in checking the possibility of discontinuity while previous work needs specially designed checking courses. To show the usefulness of the proposed techniques, an example calculating minimum infinity-norm solution for comparing the computational efficiency as well as the trajectory planning for a redundant robot manipulator are included.

여유 자유도 로봇의 국부 최적 경로 계획 (Locally optimal trajectory planning for redundant robot manipulators-approach by manipulability)

  • 이지홍;이한규;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1136-1139
    • /
    • 1996
  • For on-line trajectory planning such as teleoperation it is desirable to keep good manipulability of the robot manipulators since the motion command is not given in advance. To keep good manipulability means the capability of moving any arbitrary directions of task space. An optimization process with different manipulability measures are performed and compared for a redundant robot system moving in 2-dimensional task space, and gives results that the conventional manipulability ellipsoid based on the Jacobian matrix is not good choice as far as the optimal direction of motion is concerned.

  • PDF

Neural optimization networks with fuzzy weighting for collision free motions of redundant robot manipulators

  • Hyun, Woong-Keun;Suh, Il-Hong;Kim, Kyong-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.564-568
    • /
    • 1992
  • A neural optimization network is designed to solve the collsion-free inverse kinematics problem for redundant robot manipulators under the constraints of joint limits, maximum velocities and maximum accelerations. And the fuzzy rules are proposed to determine the weightings of neural optimization networks to avoid the collision between robot manipulator and obstacles. The inputs of fuzzy rules are the resultant distance, change of the distance and sum of the changes. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision avoidance of each joint. To show the validities of the proposed method computer simulation results are illustrated for the redundant robot with three degrees of freedom,

  • PDF