• Title/Summary/Keyword: redundant robot manipulator

Search Result 61, Processing Time 0.048 seconds

Intelligent Control of Redundant Manipulator in an Environment with Obstacles (장애물이 있는 환경하에서 여유자유도 로보트의 지능제어 방법)

  • 현웅근;서일홍
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.551-561
    • /
    • 1992
  • A neural optimization network and fuzzy rules are proposed to control the redundant robot manipulators in an environment with obstacle. A neural optimization network is employed to solve the optimization problem for resolved motion control of redundant robot manipulators in an environment with obstacle. The fuzzy rules are proposed to determine the weights of neural optimization networks to avoid the collision between robot manipulators and obstacle. The inputs of fuzzy rules are the resultant distance and change of the distance and sum of the changes by differential motion of each joint. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision aboidance of each joint. To show the validities of the proposed method, computer simulation results are illustrated for the redundant robot of the planar type with three degrees of freedom.

A Kinematic Control Method of Redundant Manipulator for the Avoidance of Joint Position and Velocity Limits (여유자유도를 갖는 로보트의 관절변수의 위치 및 속도 제한범위 회피를 위한 기구학적 제어방법)

  • 한석균;서일홍;임준홍
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.6
    • /
    • pp.598-605
    • /
    • 1988
  • A kinematic control method for the redundant robot manipulator is proposed, where redundancy is utilized to avoid the limit of joint positions and velocities. For the given tadk, the joint positions are obtained in such a way that each joint is placed as close to its center point as possible by considering the velocity limit. The robot is, therefore, controlled so that the joints move with the acceptable velocities and lie within the reachable ranges. To show the validities of the proposed method, two examples are illustrated by computer simulations for the RHINO-XR robot with sliding base.

  • PDF

Optimal Path Planning in Redundant Sealing Robots (여유자유도 실링 로봇에서의 최적 경로 계획)

  • Sung, Young Whee;Chu, Baeksuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1911-1919
    • /
    • 2012
  • In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.

OBSTACLE-AVOIDANCE ALGORITHM WITH DYNAMIC STABILITY FOR REDUNDANT ROBOT MANIPULATOR WITH FRUIT-ILARVESTING APPLICATIONS

  • Ryu, Y.S.h;Ryu, K.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1063-1072
    • /
    • 1996
  • Fruit harvesting robots should have more diversity and flexibility in the working conditions and environments than industrial robots. This paper presents an efficient optimization algorithm for redundant manipulators to avoid obstacles using dynamic performance criteria, while the optimization schemes of the previous studies used the performance criteria using kinematic approach. Feasibility and effectiveness of this algorithm were tested through simulations on a 3-degrees-of-freedom manipulator made for this study. Only the position of the end-effector was controlled , which requires only three degrees of freedom. Remaining joints, except for the wrist roll joint, which does not contribute to the end-effector linear velocity, provide two degrees of redundancy. The algorithm was effective to avoid obstacles in the workspace even through the collision occurred in extended workspace, and it was found be to a useful design tool which gives more flexibility to design conditions nd to find the mechanical constraints for fruit harvesting robots.

  • PDF

A Control System of 4 d.o.f Human Arm type Redundant Robot (인간형 4자유도 로봇팔 제어 시스템)

  • Hwang, Sung-Ri;Park, Jae-woo;Na, Sang-min;Hyun, Woong-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.301-303
    • /
    • 2018
  • This paper describes a robot control system and control method of a human arm type redundant manipulator. The control of a redundant manipulator suffer from computational complexity and singularity problem because of numerical inverse kinematics. To deal with such problems, analytical methods for a redundant robot arm have been researched to enhance the performance of inverse kinematics. In this research, we propose a numerical control method and weighted pseudo inverse kinematics algorithm. Using this algorithm, it is possible to generate a trajectory passing through the singular points and intuitively move the elbow without regard to the end-effector pose. Performance of the proposed algorithm was verified by various simulations. It is shown that the trajectory planning and using this algorithm provides correct results near the singular points and can utilize redundancy intuitively. We proved this system's validity through field test.

  • PDF

Analysis on a Minimum Infinity-norm Solution for Kinematically Redundant Manipulators

  • Insoo Ha;Lee, Jihong
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.130-139
    • /
    • 2002
  • In this paper, at first, we investigate existing algorithms for finding the minimum infinity-norm solution of consistent linear equations and then propose a new algorithm. The proposed algorithm is intended to includes the advantages of computational efficiency as well as geometric explicitness. As a practical application example, optimum trajectory planning for redundant robot manipulators is considered. Also, an efficient approach avoiding discontinuity in trajectory is proposed by resolving the non-uniqueness problem of minimum infinity-norm solution. To be specific, the proposed method for checking possible discontinuity does not need any other algorithms in checking the possibility of discontinuity while previous work needs specially designed checking courses. To show the usefulness of the proposed techniques, an example calculating minimum infinity-norm solution for comparing the computational efficiency as well as the trajectory planning for a redundant robot manipulator are included.

Locally optimal trajectory planning for redundant robot manipulators-approach by manipulability (여유 자유도 로봇의 국부 최적 경로 계획)

  • Lee, Ji-Hong;Lee, Han-Gyu;Yoo, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1136-1139
    • /
    • 1996
  • For on-line trajectory planning such as teleoperation it is desirable to keep good manipulability of the robot manipulators since the motion command is not given in advance. To keep good manipulability means the capability of moving any arbitrary directions of task space. An optimization process with different manipulability measures are performed and compared for a redundant robot system moving in 2-dimensional task space, and gives results that the conventional manipulability ellipsoid based on the Jacobian matrix is not good choice as far as the optimal direction of motion is concerned.

  • PDF

Neural optimization networks with fuzzy weighting for collision free motions of redundant robot manipulators

  • Hyun, Woong-Keun;Suh, Il-Hong;Kim, Kyong-Gi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.564-568
    • /
    • 1992
  • A neural optimization network is designed to solve the collsion-free inverse kinematics problem for redundant robot manipulators under the constraints of joint limits, maximum velocities and maximum accelerations. And the fuzzy rules are proposed to determine the weightings of neural optimization networks to avoid the collision between robot manipulator and obstacles. The inputs of fuzzy rules are the resultant distance, change of the distance and sum of the changes. And the output of fuzzy rules is defined as the capability of collision avoidance of joint differential motion. The weightings of neural optimization networks are adjusted according to the capability of collision avoidance of each joint. To show the validities of the proposed method computer simulation results are illustrated for the redundant robot with three degrees of freedom,

  • PDF