• Title/Summary/Keyword: redundancy strategy

Search Result 52, Processing Time 0.038 seconds

A Reliability Optimization Problem of System with Mixed Redundancy Strategies (혼합 중복전략을 고려한 시스템 신뢰도 최적화 문제)

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.153-162
    • /
    • 2012
  • The reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure and it has been considered as one of the major design parameters in the field of industries. Reliability-Redundancy Optimization Problem(RROP) involves selec tion of components with multiple choices and redundancy levels for maximizing system reliability with constraints such as cost, weight, etc. However, in practice both active and cold standby redundancies may be used within a particular system design. Therefore, a redundancy strategy(active, cold standby) for each subsystem in order to maximize system reliability is considered in this study. Due to the nature of RROP, i.e. NP-hard problem, A Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve the mathematical programming model and it gives consistently better quality solutions than existing studies for benchmark problems.

Optimal Reliability Strategy for k-out-of-n System Considering Redundancy and Maintenance (중복설계 및 예방정비를 고려한 수리가능 k-out-of-n 시스템 신뢰도 최적화 전략)

  • Lee, Youn-Ho;Jung, Kwang-Kyun;Yoon, Tae-Dong;Kwon, Ki-Sang
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.118-127
    • /
    • 2014
  • The configuration such as series, parallel and k-out-of-n of a repairable system directly affects its reliability. The maintenance strategy can also affect the overall performance of the system. The objective of this work is to investigate the possible trade-off between the configuration of a repairable k-out-of-n system and its maintenance strategy. The redundancy is considered to be the design decision variables, whereas the preventive maintenance period is considered to be the maintenance decision variables. The optimization model is used to minimize the overall life cycle cost associated with the system, considering constraint on reliability. Finally, genetic algorithm is used to find the optimal values for the decision variables. The result is compared with optimal values for considering redundancy and maintenance respectively.

A Fault-Tolerant Control Strategy for Cascaded H-Bridge Multilevel Rectifiers

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Schanen, Jean-Luc;Khakbazan-Fard, Mahboubeh
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 2010
  • Reliability is an important issue in cascaded H-bridge converters (CHB converters) because they use a high number of power semiconductors. A faulty power cell in a CHB converter can potentially lead to expensive downtime and great losses on the consumer side. With a fault-tolerant control strategy, operation can continue with the undamaged cells; thus increasing the reliability of the system. In this paper, the operating principles and the control method for a CHB multilevel rectifier are introduced. The influence of various faults on the CHB converter is investigated. The method of fault diagnosis and the bypassing of failed cells are explained. A fault-tolerant protection strategy is proposed to achieve redundancy in the CHB rectifier. The redundant H-bridge concept helps to deal with device failures and to increase system reliability. Simulation results verify the performance of the proposed strategy.

Fault Recovery and Optimal Checkpointing Strategy for Dual Modular Redundancy Real-time Systems (중복구조 실시간 시스템에서의 고장 극복 및 최적 체크포인팅 기법)

  • Kwak, Seong-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.112-121
    • /
    • 2007
  • In this paper, we propose a new checkpointing strategy for dual modular redundancy real-time systems. For every checkpoints the execution results from two processors, and the result saved in the previous checkpoint are compared to detect faults. We devised an operation algorithm in chectpoints to recover from transient faults as well as permanent faults. We also develop a Markov model for the optimization of the proposed checkpointing strategy. The probability of successful task execution within its deadline is derived from the Markov model. The optimal number of checkpoints is the checkpoints which makes the successful probability maximum.

Determination of the Optimal Checkpoint and Distributed Fault Detection Interval for Real-Time Tasks on Triple Modular Redundancy Systems (삼중구조 시스템의 실시간 태스크 최적 체크포인터 및 분산 고장 탐지 구간 선정)

  • Seong Woo Kwak;Jung-Min Yang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.527-534
    • /
    • 2023
  • Triple modular redundancy (TMR) systems can continue their mission by virtue of their structural redundancy even if one processor is attacked by faults. In this paper, we propose a new fault tolerance strategy by introducing checkpoints into the TMR system in which data saving and fault detection processes are separated while they corporate together in the conventional checkpoints. Faults in one processor are tolerated by synchronizing the state of three processors upon detecting faults. Simultaneous faults occurring to more than one processor are tolerated by re-executing the task from the latest checkpoint. We propose the checkpoint placement and fault detection strategy to maximize the probability of successful execution of a task within the given deadline. We develop the Markov chain model for the TMR system having the proposed checkpoint strategy, and derive the optimal fault detection and checkpoint interval.

A Die-Selection Method Using Search-Space Conditions for Yield Enhancement in 3D Memory

  • Lee, Joo-Hwan;Park, Ki-Hyun;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.33 no.6
    • /
    • pp.904-913
    • /
    • 2011
  • Three-dimensional (3D) memories using through-silicon vias (TSVs) as vertical buses across memory layers will likely be the first commercial application of 3D integrated circuit technology. The memory dies to stack together in a 3D memory are selected by a die-selection method. The conventional die-selection methods do not result in a high-enough yields of 3D memories because 3D memories are typically composed of known-good-dies (KGDs), which are repaired using self-contained redundancies. In 3D memory, redundancy sharing between neighboring vertical memory dies using TSVs is an effective strategy for yield enhancement. With the redundancy sharing strategy, a known-bad-die (KBD) possibly becomes a KGD after bonding. In this paper, we propose a novel die-selection method using KBDs as well as KGDs for yield enhancement in 3D memory. The proposed die-selection method uses three search-space conditions, which can reduce the search space for selecting memory dies to manufacture 3D memories. Simulation results show that the proposed die-selection method can significantly improve the yield of 3D memories in various fault distributions.

Reliability Analysis and Fault Tolerance Strategy of TMR Real-time Control Systems (TMR 실시간 제어 시스템의 내고장성 기법 및 신뢰도 해석)

  • Kwak, Seong-Woo;You, Kwan-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.8
    • /
    • pp.748-754
    • /
    • 2004
  • In this paper, we propose the Triple Modular Redundancy (TMR) control system equipped with a checkpoint strategy. In this system, faults in a single processor are masked and faults in two or more processors are detected at each checkpoint time. When faults are detected, the rollback recovery is activated to recover from faults. The conventional TMR control system cannot overcome faults in two or more processors. The proposed system can effectively cope with correlated and independent faults in two or more processors. We develop a reliability model for this TMR control system under correlated and independent transient faults, and derive the reliability equation. Then we investigate the number of checkpoints that maximizes the reliability.

Performance Analysis of Checkpointing and Dual Modular Redundancy for Fault Tolerance of Real-Time Control System (실시간 제어 시스템의 결함 극복을 위한 이중화 구조와 체크포인팅 기법의 성능 분석)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.376-380
    • /
    • 2008
  • This paper deals with a performance analysis of real-time control systems, which engages DMR(dual modular redundancy) to detect transient errors and checkpointing technique to tolerate transient errors. Transient errors are caused by transient faults and the most significant type of errors in reliable computer systems. Transient faults are assumed to occur according to a Poisson process and to be detected by a dual modular redundant structure. In addition, an equidistant checkpointing strategy is considered. The probability of the successful task completion in a real-time control system where periodic checkpointing operations are performed during the execution of a real-time control task is derived. Numerical examples show how checkpoiniting scheme influences the probability of task completion. In addition, the result of the analysis is compared with the simulation result.

A Study on Reliability Optimal Design of Satellite system(Based on MSC System's structure of KOMPSAT-2) (인공위성 시스템의 신뢰도 최적 설계에 관한 연구(아리랑위성 2호의 MSC 시스템 구조를 중심으로))

  • Kim, Heung-Seob;Jeon, Geon-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1150-1159
    • /
    • 2011
  • Reliability is defined as a probability that a system will operate properly for a specified period of time under the design operating conditions without failure. Reliability-Redundancy Optimization Problem(RROP) involves selection of components with multiple choices, redundancy levels and redundancy strategy(Active or Standby) for maximizing system reliability with constraints such as cost, weight, etc. Based on the design configuration of Multi-Spectral Camera(MSC) system of KOMPSAT-2, the mathematical programming model for RROP is suggested in this study. Due to the nature of RROP, i.e. NP-hard problem, Parallel Particle Swarm Optimization(PPSO) algorithm is proposed to solve it. The result of the numerical experiment for RROP is presented as instance of recommended design configuration at some mission time.

Storage Strategy and Separated Storage Structure for Multi-dimensional Geographic Information System (다차원 지리정보시스템을 위한 저장기법 및 분리된 저장구조)

  • Park, Dong-Seon;Bae, Hae-Young
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • Up to the present, many GIS logical data models have been proposed to incorporate time dimension into traditional 2-dimensional (2D space) GIS databases. However, these models are difficult to implementation of multi-dimensional GIS and have problems of significant data redundancy and search performance. This paper proposes a new storage strategy and a separate storage structure, that is composed of current database and past database, in order to reduce data redundancy and improve search performance of temporal query. Also we design moving algorithm for migration from current database to past database, and design efficient search algorithm for temporal query.

  • PDF