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Reliability Analysis and Fault Tolerance Strategy of TMR Real-time
Control Systems
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Abstract : In this paper, we propose the Triple Modular Redundancy (TMR) control system equipped with a checkpoint strategy. In
this system, faults in a single processor are masked and faults in two or more processors are detected at each checkpoint time. When
faults are detected, the rollback recovery is activated to recover from faults. The conventional TMR control system cannot overcome
faults in two or more processors. The proposed system can effectively cope with correlated and independent faults in two or more
processors. We develop a reliability model for this TMR control system under correlated and independent transient faults, and derive
the reliability equation. Then we investigate the number of checkpoints that maximizes the reliability.
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I. Introduction

In recent years, control of systems using digital computers
has been drastically increased due to the availability of
inexpensive, powerful computers and the increasing needs to
control more sophisticated processes. Therefore when
computers are involved in controlling dangerous and life-
critical systems such as nuclear reactors or aircraft, failure or
malfunction of computers may lead to enormous disaster.
These life-critical applications often require control in real
time, that is, control actions have tight timing
requirements(Control System Deadline : CSD), and violation
of timing requirements invalidates the usefulness of the
control action. Thus computers(or processors) deployed in
these life-critical control applications require stringent
reliability specifications. It is usually met by imposing fault
tolerance to controller computers.

Among faults that cause some control system failures,
transient faults are becoming more important in recent years.
More than 90% of field failures are reported as being caused
by transient faults[1]. Transient faults occurring independently
in each processor are called independent faults. They are
usually caused by internal factors. In contrast, transient faults
affecting several processors simultaneously are called
correlated faults. Correlated faults are caused mostly by
external factors such as EMI. These faults are especially
important in the area of aerospace, which is characterized by
an environment containing significant electromagnetic and
elementary particle radiation. For example, airborne
computers can be disrupted by lightning strikes. Transient
faults can be handled by hardware, time, or information
redundancies. Triple Modular Redundancy(TMR) is one of the
most popular hardware fault-tolerance methods[2]-[5]. Errors
generated by any single faulty module are masked out through
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a simple voter. The TMR strategy is useful for tolerating
independent faults in one processor, but it suffers from
independent faults in two or more processors and correlated
faults. Checkpoint scheme using time redundancy is also a
fault tolerance technique commonly used for transient
faults[6]-[12]. In this scheme, the intermediate states of a task
are saved periodically in a secure device at each checkpoint
time. If an error is detected, the saved states are restored and
the task re-executed from the checkpoint(called rollback).
Thus, checkpoint can greatly reduce the probability of
incorrect outputs due to transient faults, and so make the
control task to be more reliable.

In this paper, we propose a TMR system called as the
TMTR(Triple Modular Temporal Redundancy) system, which
is equipped with a checkpoint scheme. The TMTR system can
cope with both correlated faults and independent faults in any
processors. We develop a reliability model for this TMTR
system under independent and correlated faults, and then
analyze the reliability. The mission-time reliability of the
TMTR control system is derived. Finally, we find the optimal
number of checkpoints that maximizes the reliability. This
paper is organized as follows. In Section 2, the TMTR system
is discussed, and reliability of this system is analyzed in
Section 3. Numerical results are provided in Section 4. We
conclude with Section 5.

II. TMTR Control System

As a real-time control system executes the same task
periodically at each sampling time, the operation in one
sampling interval is repeated in other sampling intervals. Also,
a real-time controlled plant has a deadline within which the
periodic task must be finished. Missing a deadline leads to a
system failure such as crash in airplane(dynamic failure[2]).

Real-time control systems are often used in harsh
environments, and subject to many transient faults while in
operation. Checkpoint enables a reduction in the recovery time
from a transient fault by saving intermediate states of a task in
a reliable storage facility, and then, on detection of a fault,
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restoring from a previously stored state. Whereas inserting
more checkpoints and reducing the interval between them
reduces the re-processing time after faults, checkpoints have
associated costs, and inserting extra checkpoints increases the
overall cost and the task execution time. Thus, a trade-off
between the re-processing time and the checkpoint overhead
leads to an optimal checkpoint placement strategy that
optimizes certain performance measures.
1. Basic Assumptions

Consider a control system that is characterized by a periodic control

task with the following assumptions.
A.1 : Checkpoints can be inserted anywhere in the periodic
task.
A.2 : Faults within a checkpoint interval are detected at each
checkpoint time.
A.3 : The deadline of a control task is equal to its sampling
period.

A4 : Transient faults arrive as a Poisson process with rate A
and disappear with rate z¢.

A.S : Correlated faults affect all the processors simultaneously.

A.6 : Faults always cause errors.

In practical, it may be difficult to insert checkpoints
anywhere in the task, that is, difficult to maintain checkpoint
intervals equal. However, analysis under the assumption of
equal checkpoint interval (Assumption A.1) can give insight
on how checkpoints should be inserted for best reliability. A.2
means that any faults can be detected through voting in the
TMR system. A.3 represents that we consider a strict control
system. A.4 is assumed for simple analysis. A.5 and A.6 are
conservative assumptions: Faults may not cause errors and
correlated faults may affect only one or two processors.

2. TMTR System Structure & Operation

The TMTR system utilizes both the space and the temporal
redundancy. By using the TMR(the space redundancy), faults
in a single processor can be masked and faults in multiple
processors can be detected through 2 out-of 3 voting. Also, the
checkpoint strategy (the temporal redundancy) is used to
recover from correlated faults. Fig. 1 shows the basic
hardware configuration of this system, and Fig. 2 is the time

sequence of operation. T means a sampling period, which is
equal to a deadline, and A is the checkpoint interval. Three

processors send voting data to a voter(see Figs. 1 and 2) at
each checkpoint time. The voter gives two outputs; voting
information and the majority. Voting information contains that
there are no errors on three processors, or there is one faulty
processor, or there is no majority data(voting failure has
occurred). The majority is the voted results.

Each processor gets the voting information from the voter
and determines whether to rollback or to save the majority
data into a secure memory. All processors rollback to the latest
checkpoint when the voting information contains that voting
failure has occurred. In case of successful voting(no error or
only one processor error), each processor synchronizes its
voted data with that of other processors by fetching the
majority results, and saves the majority to its secure memory.

Majority Data

Voting Information

Processor 1

Processor 2

Input

Processor 3

Fig. 1. Hardware configuration of the TMTR System.
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Fig. 2. Time operation of the TMTR system.

Therefore, errors in any single processor can be masked
through voting, and errors in multiple processors can be
recovered through rollback.

Let Tc be the required time to execute the periodic task.
Then, if there are n checkpoints in 7. 6 the checkpoint
interval A and the allowable maximum number of
checkpoints m that can be inserted in one sampling period
(deadline) are obtained as follows.

A=y, (1)
n

= {lJ @)
A

where I_xJ is the largest integer which does not exceed x,
and t,, is the checkpoint overhead. Also the remaining time
(Ay) after m checkpoints in T can be derived as:
A, = T—-m-A (0<A, <A). Note that owing to the

checkpoint overhead, the execution time of a task is increased
by n-t, afier placing M checkpoints. Fig. 2 shows A, T

and A;. For the successful execution of a task, at least 7
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checkpoint intervals should be fault free among the m

checkpoint intervals available in one T . In other words, the
TMTR system can overcome faults in up to(m—n)

checkpoint intervals.

I1. Reliability Analysis of TMTR Control System

1. Reliability Model for the TMR Control System
Consider a control system that is characterized by a single
processor. This control system reads sensor values, computes
control inputs using a suitable algorithm, and outputs the
results to plants. These steps are repeated in each fixed
sampling period, 7 . Thus, a mission of the control system
consists of sampling periods. In an environment of transient
faults, each sampling period of the control system can be
represented by three states, ‘0’(up), ‘1’(down), and F, as
shown in Fig. 3. Here, the state '0'(up) represents that there is
no fault at the beginning time of a periodic task (fault free at
time t=kT) and the periodic task is executed correctly and
finished within the deadline, that is, the period from (k —1)T

to kT . The state

'1'(down) means that there are some faults at the beginning
time of a periodic task(faulty at t=kT) while the periodic task
is executed correctly and finished within the deadline. The
state 'F' means that the control task is either executed
incorrectly or not finished within the period from (k —~1)T

to AT .
Since we assumed transient faults of exponential

distributions with occurrence rate A and recovery rate M,

and a strict real-time control system, the single processor real-
time control system under transient faults can be modeled with
the three-state discrete time Markov chain as shown in Fig. 4.
This Markov chain evolves with sampling periods
t=kT,(where k=1, 2...). From this Markov model, we can find
the stochastic state of a control system after a mission time,

4,(8)
—
.

activation of
transient fauit

Fig. 3. State description of a single processor control system.
Py
(D Em
Sz
(F)
)

Fig. 4. Markov model of a single processor control system
under transient faults.
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and hence the control system reliability. The reliability of a
control system over a period of operation(the mission) is the
probability that its entire critical workload executes on time
successfully over the period.

For a TMR system, we should consider two types of
transient faults. They are independent faults and correlated
faults. Independent faults affect each processor independently,
whereas  correlated faults affect three processors
simultaneously. Because the model of a single processor
control system under transient faults needs two states
excluding the failed state as in Fig. 4, a TMR system model
under independent and correlated faults needs sixteen states

(2’ x2) plus one failure state: 2° states (2 states for each
processor) for independent faults, and 2 states for correlated
faults.

However, if all three processors have the same
hardware/software components and configurations, the
number of states for independent faults can be reduced to four
states, because all the processors have the same fault
occurrence and recovery rates. The four states, denoted as '0’,
"1, '2', '3, represent the number of processors which are under
independent faults at t=kT. Therefore, the TMR control
system under independent and correlated transient faults can
be modeled with a nine-state discrete-time Markov chain.

We denote each state of the TMR control system as (i, j)
except the failed state 'F'. The first element 1" (i € {'0' (up),
1" (down)}) represents the state of the TMR control system
under correlated faults. The 'I' (down) means that the TMR
control system is affected by correlated faults at t=kT, and the
'0'(up) means that the TMR control system is free from
correlated faults at t=kT. The second element Y (j €
{‘0’(0-down), 'l' (1-down), 2' (2-down), '3' (3-down)})
indicates state under independent faults: 'J' represents the
number of processors affected by independent faults at t=kT.
Fig. 5 shows the Markov model. In state (i,j), the periodic task
is executed successfully within the deadline. The state 'F'
represents that the TMR control system has failed due to
missing a deadline. For example, the state (1,2) means that the
TMR control system is affected by correlated faults, at =kT
(down), and also two of three processors by independent faults
(2-down), while the periodic task is executed successfully

state in correlated faults state in independent
: L faults

Fig. 5. Markov model of the TMR control system under
correlated correlated and Independent transient faults.
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within the deadline.
2. Reliability of the TMTR Control System

To find the reliability of the TMTR control system over a
mission, we should find the stochastic states after the mission.
The stochastic states can be derived with the knowledge of
transition probabilities in the model of Fig. 5. Let 4.(A) (i,

i' € {‘0’(up), ‘1’(down)}) be the probability of staying in

state i' at t=A given the initial state i at t=0 for a single
processor system, then they can be obtained as follows [13].

po(A) = /Tle“’”“u ﬁ 3)
pua) = -ty @
go(a) = —;—%e“”+‘>A+ ﬁT é)
pu(a) =ty ﬂil ©)

Also @o(A), which is defined as the probability that there

are no faults within time interval [0, A ], is obtained as
follows.

go(A) = ¢ (7)

Next, we define A—step transition probabilities of the TMTR
system as follows.
* S, j)i', ) : Transition probability of a checkpoint
interval A from state (i,j) into (i',j") without voting failure.

®* U@, j)i', ;') : Transition probability of a checkpoint

interval A from state (i,j) into (i',j') with voting failure.

o NG, jxit, iy : Transition probability of an interval A
from state (i,j) into (i'j").
Here, i (i’), j (°) represents states under correlated and
independent faults respectively (i,i’ € {*0’(up),’1’(down)}
jJ’ € {‘0°(0- down),’1°(1-down),’2’(2-down),’3’(3-down)}).
Let S, U, and H be the matrices that have their elements of
S, NG, W, ixit, i), and R, jxr, i) respectively.
Then we can find the following relation.

U = H-S ®)
Fortunately, elements of the S matrix, $¢, /)i,y , have

nonzero value only for (i), (i,j') € {(0,0), (0,1)}, and all
zeros for other states because these states can not produce
successful voting. The S matrix is shown in Fig. 6. Because
§(0,0)(0,0) is the probability that no correlated faults exist
within an interval A and independent faults at most one

processor with both beginning and end state of an interval A
of '0', it can be obtained as follows.

5(0,0)0,0) = C¢0(A)-[i¢30(A)
+3-("go(A) = "po(A)) '¢°e(A)]

Here, superscript c(i) means that parameters of correlated
(independent) faults, that is, Ac (Ai), fh (44 ) are used for

the calculation of ¢@..(-) . @oo(A) — Po(A) is the

probability that faults exist within an interval A with both
beginning and end state of '0".
Similarly, S¢0,0)0,1), $(0,1)0,0) and S$(0,1)0,1) can

be derived as follows.
soon= ‘go(A)-3"'ga(A) ' #7o(A) (10)
son0.n= ‘Po(A)- 'gu(A) - go(A)  (11)
sonon= ‘go(A)- "gu(A) - g’e(A)  (12)

The H matrix is shown in Fig. 7. Note that the element of
each transition probability is product of two transition
probabilities, transition probabilities of independent faults

(¢ p;j,) and correlated faults (‘@;(A)). Also each of the four

divided sections in Fig. 7 has the same transition probabilities
for independent faults. Thus the elements of H matrix,

ha, e, J') , can be easily derived as follows:

A

heo.jxo0. )= ‘poo(A)-"Pj (13)
heo, jxt = ‘gor(A)- il’Ajy' (14)
ha, o, = “Pro(A)- iPAjj' (15)
ha, i, = ‘gr(A)- if;]‘j' (16)

Transition probabilities due to independent faults * P, are in

Table 1. The U matrix can be obtained from Eq. 8.

We define W(i) as a transition probability matrix that there
is an unsuccessful transition (voting failure at checkpoint
time) for consecutive (i-1) A -steps and the successful
transition at i- th A -step, then it is:

W(@iy=U""S (17)

Let Q be the transition probability matrix of one sampling
period where the periodic task completes its execution
successfully, then Q can be obtained as follows.

iy i2f inf
Q= e DWW (i2) - W (in) Ha (18)

n=t 2=l in=1

hiy=m—-—n+1

j=1
if=m-—-n+ j— Yir, j=z2
k=1
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Fig. 6. S Matrix. Fig. 7. H Matrix.

Table. 1. Transition Probabilities ‘P .

Transition Probabilities Transition Probabilities

Puw = Pwa) TP = pus) Pma)

’;’m = 37 ¢%m(8) 901 (&) ’13“ = () PR (A)+ 2.7 g10(A) T (a) pm(a)
‘;’m = 35 gm () 'pm(a) ';’u = 27 g1(A) "poi(8) g (B) + p10(8) g%01(A)
';’m = igda(a) ';’13 = Tgu(s) '$loi(8)
';’m = ig0(a) ';’m = 16%10(A) 'g00(A)
’;’31 = 37 gu(a) ‘ghu(a) ’;’21 = Tgor(8) {g210(a) +2 1 g1(A) Ig10(A) go0(A)

"Pn = 37gw0) s ) TPn = 27 g11(a) 'po(a) gn(a) + go(8) 'elu(a)

Pn = i) TPa = gua)'etuca)

Here Ha is the transition probability matrix of an
interval A1, which can be obtained from H by substituting
A with A1,

Let 7. H(?) be the probability of staying in state (i) at time t.
We define the state vector II(f) = [z, 0(f) 7. 1(?)
7q,3(t)]. From the Markov model of Fig. 4, the state after k

sampling periods, that is time interval [0,kT], can be obtained
as:

TI(kT) = TI(0)Q" (19)

Since the reliability after t=kT is
To,0(t) + Ton(t)+ -+ ma3(t) , we have
R(T) = TIO)Q 1 11" (20)
where II(0) = [1 0 --- O]
Here TII(0) is the initial probability of the TMR control

system at each state: We assumed fault free state at the initial
time.

IV. Numerical Results
Fig. 8 shows how the system reliability varies with the
workload of periodic task in a sampling period(the portion of
periodic task in the sampling period) and the number of
checkpoints. The checkpoint overhead is assumed to be 1 % of

T, checkpoint interval T is 0.1, the mission is 10* sampling

, Ae = 5x107,

periods, fault occurrence rates are Ai = 107

Mo - Xsst - ALBSS =2X KM 102, M8 & 2004.8

and the duration parameters are ui = 500, uc =100. The
and the duration parameters are ui = 500, u. = 100. The
system reliability decreases as the increase of workload
because of the less idle time for rollback recovery. The
envelop reliability(the reliability connecting each local
maximum) at first improves as the number of checkpoint is
increased, but later drops off because the more checkpoints
mean the more checkpoint overhead. There is a finite optimal
number of checkpoints such that before this checkpoints
envelop reliability increases with the increase of checkpoints
and after that envelop reliability decreases because of the
increased checkpoint overhead. Note that even though envelop
reliability increases(decreases) before(after) the optimal
number of checkpoints, reliabilities jitter along with the
number of checkpoints. This jittering phenomenon is caused
by the property of TMTR control system that detects errors at
checkpoint times not at their occurrences. Readers can find
detailed discussions of this jittering phenomenon in our
previous work[12]. The optimal number of checkpoints also
can be obtained by using the algorithm proposed in our
previous work. Fig. 9 shows the variation of reliability to
checkpoint overhead. The reliability decreases with the
increase of overhead because of the increased portion of
checkpoint overhead in idle time.

Figs. 10 and 11 are simulation results with the variation of
# and A respectively. The reliability decreases with the
decrease of recovery rate 1 as can be seen in Fig. 10. For
rapid recovery rates (large 4 ), the optimal number of
checkpoint does not change. However, it changes for slow
recovery rates(small ). The reliability decreases with the
increase of fault occurrence rate A . However, from several
simulations we can find that the optimal checkpoints that
maximizes the reliability does not change with the variation of
A as can be seen in Fig. 11.
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Fig. 8. Reliability vs. workload and checkpoints.
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V. Conclusion

The TMR structure is commonly used in many fault tolerant
systems. It utilizes the space redundancy to mask and tolerate
faults. The checkpoint technique, which utilizes the temporal
redundancy, also has been adopted to recover from transient
faults. In this study, we proposed the TMR control system that
is equipped with the checkpoint strategy(TMTR control
system). In this system, faults in a single processor are masked
and faults in two or more processors are detected at each
checkpoint time by voting three processor's results. The
conventional TMR system cannot overcome faults in two or
more processors. However the TMTR control system recovers
from faults in two or more processors through rollbacks to the
latest checkpoints. Thus the proposed TMTR control system
effectively copes with both independent and correlated faults.
We developed a model for this TMTR control system under
correlated and independent transient faults. Assuming that the
occurrence and disappearance of transient faults are modeled
with an exponential probability distribution, the system
reliability equation over a mission time is derived. Under the
proposed control system, we showed the optimal number of
checkpoints that maximizes the mission time reliability.
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