• Title/Summary/Keyword: redundancy method

Search Result 557, Processing Time 0.024 seconds

An Evolution of Cellular Automata Neural Systems using DNA Coding Method (DNA 코딩방법을 이용한 셀룰라 오토마타 신경망의 진화)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.10-19
    • /
    • 1999
  • Cellular Automata Neural Systems(CANS) are neural networks based on biological development and evolution. Each neuron of CANS has local connection and acts as a form of pulse according to the dynamics of the chaotic neuron. CANS are generated from initial cells according to the CA rule. In the previous study, to obtain the useful ability of CANS, we make the pattern of initial cells evolve. However, it is impossible to represent all solution space, so we propose an evolving method of CA rule to overcome this defect in this paper. DNA coding has the redundancy and overlapping of gene and is apt for the representation of the rule. In this paper, we show the general expression of CA rule and propose translation method from DNA code to CA rule. The effectiveness of the proposed scheme was verified by applying it to the navigation problem of autonomous mobile robot.

  • PDF

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

Interband Vector Quantization of Remotely Sensed Satellite Image Using Edge Region Compensation (에지 영역 보상을 이용한 원격 센싱된 인공위성 화상의 대역간 벡터양자화)

  • Ban, Seong-Won;Kim, Young-Choon;Lee, Kuhn-Il
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.124-132
    • /
    • 1999
  • In this paper, we propose interband vector quantization of remotely sensed satellite image using edge region compensation. This method classifies each pixel vector considering spectral reflection characteristics of satellite image data. For each class, we perform classified intraband VQ and classified interband VQ to remove intraband and interband redundancies, respectively. In edge region case, edge region is compensated using class information of neighboring blocks and gray value of quantized reference band. Then we perform classified interband VQ to remove interband, redundancy using compensated class information, effectively. Experiments on remotely sensed satellite image show that coding efficiency of the proposed method is better than that of the conventional method.

  • PDF

A Cooperative Hybrid ARQ Scheme with Adaptive Retransmission (적응 재전송을 적용한 협력 하이브리드 ARQ 기법)

  • Kang, Seong-Kyo;Wang, Jin-Soo;Kim, Yun-Hee;Song, Iick-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3A
    • /
    • pp.213-220
    • /
    • 2009
  • Cooperative diversity is a promising technique for range extension and diversity increase without the use of multiple transmit antennas at the user equipment. In this paper, we propose a cooperative hybrid automatic repeat request relay method with adaptive retransmission to increase the throughput when the SNR of a source user is low. In the proposed method, the source user transmits the first segment of a codeword to relay users and a base station. If the base station fails to recover the information from the received packet, it requests the source or some relay users to retransmit the packet previously sent. In addition, the retransmission type of a selected user is chosen from repetition or incremental redundancy according to the quality of systematic bits in a turbo codeword. Simulation results show that the proposed method improves the throughput compared to conventional methods, and the improvement is significant when the source user has a low SNR.

Active Distribution System Planning for Low-carbon Objective using Cuckoo Search Algorithm

  • Zeng, Bo;Zhang, Jianhua;Zhang, Yuying;Yang, Xu;Dong, Jun;Liu, Wenxia
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.433-440
    • /
    • 2014
  • In this study, a method for the low-carbon active distribution system (ADS) planning is proposed. It takes into account the impacts of both network capacity and demand correlation to the renewable energy accommodation, and incorporates demand response (DR) as an available resource in the ADS planning. The problem is formulated as a mixed integer nonlinear programming model, whereby the optimal allocation of renewable energy sources and the design of DR contract (i.e. payment incentives and default penalties) are determined simultaneously, in order to achieve the minimization of total cost and $CO_2$ emissions subjected to the system constraints. The uncertainties that involved are also considered by using the scenario synthesis method with the improved Taguchi's orthogonal array testing for reducing information redundancy. A novel cuckoo search (CS) is applied for the planning optimization. The case study results confirm the effectiveness and superiority of the proposed method.

A Study on Compression of Connections in Deep Artificial Neural Networks (인공신경망의 연결압축에 대한 연구)

  • Ahn, Heejune
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2017
  • Recently Deep-learning, Technologies using Large or Deep Artificial Neural Networks, have Shown Remarkable Performance, and the Increasing Size of the Network Contributes to its Performance Improvement. However, the Increase in the Size of the Neural Network Leads to an Increase in the Calculation Amount, which Causes Problems Such as Circuit Complexity, Price, Heat Generation, and Real-time Restriction. In This Paper, We Propose and Test a Method to Reduce the Number of Network Connections by Effectively Pruning the Redundancy in the Connection and Showing the Difference between the Performance and the Desired Range of the Original Neural Network. In Particular, we Proposed a Simple Method to Improve the Performance by Re-learning and to Guarantee the Desired Performance by Allocating the Error Rate per Layer in Order to Consider the Difference of each Layer. Experiments have been Performed on a Typical Neural Network Structure such as FCN (full connection network) and CNN (convolution neural network) Structure and Confirmed that the Performance Similar to that of the Original Neural Network can be Obtained by Only about 1/10 Connection.

Fast 2-D Complex Gabor Filter with Kernel Decomposition (커널 분해를 통한 고속 2-D 복합 Gabor 필터)

  • Lee, Hunsang;Um, Suhyuk;Kim, Jaeyoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1157-1165
    • /
    • 2017
  • 2-D complex Gabor filtering has found numerous applications in the fields of computer vision and image processing. Especially, in some applications, it is often needed to compute 2-D complex Gabor filter bank consisting of the 2-D complex Gabor filtering outputs at multiple orientations and frequencies. Although several approaches for fast 2-D complex Gabor filtering have been proposed, they primarily focus on reducing the runtime of performing the 2-D complex Gabor filtering once at specific orientation and frequency. To obtain the 2-D complex Gabor filter bank output, existing methods are repeatedly applied with respect to multiple orientations and frequencies. In this paper, we propose a novel approach that efficiently computes the 2-D complex Gabor filter bank by reducing the computational redundancy that arises when performing the Gabor filtering at multiple orientations and frequencies. The proposed method first decomposes the Gabor basis kernels to allow a fast convolution with the Gaussian kernel in a separable manner. This enables reducing the runtime of the 2-D complex Gabor filter bank by reusing intermediate results of the 2-D complex Gabor filtering computed at a specific orientation. Experimental results demonstrate that our method runs faster than state-of-the-arts methods for fast 2-D complex Gabor filtering, while maintaining similar filtering quality.

Oil Price Forecasting Based on Machine Learning Techniques (기계학습기법에 기반한 국제 유가 예측 모델)

  • Park, Kang-Hee;Hou, Tianya;Shin, Hyun-Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.1
    • /
    • pp.64-73
    • /
    • 2011
  • Oil price prediction is an important issue for the regulators of the government and the related industries. When employing the time series techniques for prediction, however, it becomes difficult and challenging since the behavior of the series of oil prices is dominated by quantitatively unexplained irregular external factors, e.g., supply- or demand-side shocks, political conflicts specific to events in the Middle East, and direct or indirect influences from other global economical indices, etc. Identifying and quantifying the relationship between oil price and those external factors may provide more relevant prediction than attempting to unclose the underlying structure of the series itself. Technically, this implies the prediction is to be based on the vectoral data on the degrees of the relationship rather than the series data. This paper proposes a novel method for time series prediction of using Semi-Supervised Learning that was originally designed only for the vector types of data. First, several time series of oil prices and other economical indices are transformed into the multiple dimensional vectors by the various types of technical indicators and the diverse combination of the indicator-specific hyper-parameters. Then, to avoid the curse of dimensionality and redundancy among the dimensions, the wellknown feature extraction techniques, PCA and NLPCA, are employed. With the extracted features, a timepointspecific similarity matrix of oil prices and other economical indices is built and finally, Semi-Supervised Learning generates one-timepoint-ahead prediction. The series of crude oil prices of West Texas Intermediate (WTI) was used to verify the proposed method, and the experiments showed promising results : 0.86 of the average AUC.

A Study of Java Card File System with File Cache and Direct Access function (File Cache 및 Direct Access기능을 추가한 Java Card File System에 관한 연구)

  • Lee, Yun-Seok;Jun, Ha-Yong;Jung, Min-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.404-413
    • /
    • 2008
  • As toward a ubiquitous society, a lot of methods have been proposed to protect personal privacy. Smart Cards with CPU and Memory are widely being used to implement the methods. The use of Java Card is also gradually getting expanded into more various applications. Because there is no standards in Java Card File System, Generally, Java Card File System follows the standards of Smart Card File System. However, one of disadvantages of the Java Card File System using a standard of Smart Card File System is that inefficient memory use and increasing processing time are caused by redundancy of data and program codes. In this paper, a File Cache method and a Direct Access method are proposed to solve the problems. The proposed methods are providing efficient memory use and reduced processing time by reduce a program codes.

  • PDF

Design of High Speed Binary Arithmetic Encoder for CABAC Encoder (CABAC 부호화기를 위한 고속 이진 산술 부호화기의 설계)

  • Park, Seungyong;Jo, Hyungu;Ryoo, Kwangki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.774-780
    • /
    • 2017
  • This paper proposes an efficient binary arithmetic encoder hardware architecture for CABAC encoding, which is an entropy coding method of HEVC. CABAC is an entropy coding method that is used in HEVC standard. Entropy coding removes statistical redundancy and supports a high compression ratio of images. However, the binary arithmetic encoder causes a delay in real time processing and parallel processing is difficult because of the high dependency between data. The operation of the proposed CABAC BAE hardware structure is to separate the renormalization and process the conventional iterative algorithm in parallel. The new scheme was designed as a four-stage pipeline structure that can reduce critical path optimally. The proposed CABAC BAE hardware architecture was designed with Verilog HDL and implemented in 65nm technology. Its gate count is 8.07K and maximum operating speed of 769MHz. It processes the four bin per clock cycle. Maximum processing speed increased by 26% from existing hardware architectures.