• Title/Summary/Keyword: redundancy analysis

Search Result 382, Processing Time 0.029 seconds

Optimization of Redundancy based on the required reliability for a reliable Systems

  • Ryoo, Dong-Wan;Lee, Hyung-Jik;Lee, Jeun-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.3-69
    • /
    • 2002
  • The reliability of system is to become a important concern in developed industry. The controller based on the reliability is so important position. A reliable system is for system protection and human life by fault detection and control action against the transient condition of system. The aerospace system , nuclear reactor and chemical reactor are representative of a reliable system. This paper presents analysis of reliable system reliability, formal problem statement of optimal redundancy based on the reliability for a reliable system. And the problem is optimized by genetic algorithm. The genetic algorithms is useful algorithm in case of...

  • PDF

Analysis of error correction capability and recording density of an optical disc system with LDPC code (LDPC 코드를 적용한 광 디스크 시스템의 에러 정정 성능 및 기록 용량 분석)

  • 김기현;김현정;이윤우
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.537-540
    • /
    • 2003
  • In this paper, we evaluated error correction performance and recording density of an optical disc system. The performance of Low-Density Parity Check code (LDPC) is compared to the HD-DVD (BD) ECC. The recording density of optical disc can be increased by reducing the redundancy of the user data. Moreover, since the correction capability of LDPC with decreased redundancy is better than that of BD, the recording density can also be increased by reducing the mark length of the data on the disc surface.

  • PDF

Algorithm-based fault tolerant vector convolution on array processor (배열프로세서상에서 알고리즘 기반 결함허용 벡터 컨버루션)

  • 송기용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.1977-1983
    • /
    • 1998
  • An algorithm-based fault tolerant scheme for the vector convolution is proposed employing the positive and negative checksum vectors that are defined in this paper based on the encoder vector. The proposed scheme is implemented on the aray processor, and then the amount of redundancy is examined thrugh the complexity analysis.

  • PDF

Simulation-Based Risk Analysis of Integrated Power System (시뮬레이션을 이용한 통합전력시스템의 위험도 분석)

  • Lee, Ji Young;Han, Young Jin;Yun, Won Young;Bin, Jae Goo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.2
    • /
    • pp.151-164
    • /
    • 2016
  • In this paper, we deal with a risk analysis for an IPS (Integrated power system) and propose a simulation model combining the fault tree and event tree in order to estimate the system availability and risk level, together. Firstly, the basic information such as operational scenarios, physical structure, safety systems is explained in order to make the fault tree and event tree of the IPS. Next, we propose a discrete-event simulation model using a next-event time advance technique to advance the simulation time. Also the state transition and activity diagrams are explained to represent the relationship between the objects. By numerical examples, the redundancy allocation is considered in order to decrease the risk level of the IPS.

A Practical Improvement to the Partial Redundancy Elimination in SSA Form

  • Park, Jong-Soo;Lee, Jae-Jin
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.3
    • /
    • pp.301-320
    • /
    • 2008
  • Partial redundancy elimination (PRE) is an interesting compiler optimization because of its effectiveness and generality. Among many PRE algorithms, the one in static single assignment form (SSAPRE) has benefits over other bit-vector-based PRE algorithms. It preserves the properties of the SSA form after PRE and exploits the sparsity of the SSA form, resulting in reduced analysis and optimization time. This paper presents a practical improvement of the SSAPRE algorithm that further reduces the analysis and optimization time. The underlying idea is removing unnecessary ${\Phi}$'s during the ${\Phi}$-Insertion phase that is the first step of SSAPRE. We classify the expressions into three categories: confined expressions, local expressions, and the others. We show that unnecessary ${\Phi}$'s for confined and local expressions can be easily detected and removed. We implement our locality-based SSAPRE algorithm in a C compiler and evaluate its effectiveness with 20 applications from SPEC benchmark suites. In our measurements, on average 91 of ${\Phi}$'s identified by the original demand-driven SSAPRE algorithm are unnecessary for PRE. Pruning these unnecessary ${\Phi}$'s in the ${\Phi}$-Insertion phase makes our locality-based SSAPRE algorithm 1.8 times faster, on average, than the original SSAPRE algorithm.

Redundancy Management Design for Triplex Flight Control System (3중 비행제어시스템의 다중화 기법 설계)

  • Park, Sung-Han;Kim, Jae-Yong;Cho, In-Je;Hwang, Byung-Moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.169-179
    • /
    • 2010
  • Satisfying the same probability of loss of control and essentially two fail operative performance with a triplex computer architecture requires a lot of modification of the conventional redundancy management design techniques, previously employed in quadruplex digital flight control computer. T-50 FCS for triplex redundancy management design applied an advanced digital flight control architecture with an I/O controller which is functionally independent of the digital computer to achieve the same reliability and special failure analysis and isolation schemes for fail operational goals with a triplex configuration. The analysis results indicated that the triplex flight control system is to satisfy the safety requirement utilizing the advanced flight control techniques and the system performance of the implemented flight control system was verified by failure mode effect test.

The Design and Reliability Analysis of A Mission-Critical Computer Using Extended Active Sparing Redundancy (확장 ASR 기법을 이용한 임무지향 컴퓨터의 설계 및 신뢰도 분석)

  • Shin, Jin-Beom;Kim, Sang-Ha
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.235-244
    • /
    • 2009
  • The mission-critical computer for air defense has to maintain its operation without any fault for a long mission time and is required to implement at low cost. Now the reliability of the mission critical-computer using Active Sparing Redundancy fault-tolerant technique is inferior to that of the computer using TMR technique. So in this paper are proposed Extended ASR(EASR) technique that provides higher reliability than that of the computer using TMR technique. The fault-tolerant performance of the implemented mission-critical computer is proven through reliability analysis and numbers of fault recovery test. Also, the reliability of the mission-critical computer using EASR technique is compared with those of computer using ASR and TMR techniques. EASR technique is very suitable to the mission-critical computer.

An Experiment on Redundancy in Continuous Span Two-Girder Bridge - Effects of Lateral Bracing (연속 2-거더교의 여유도 평가 실험 - 수평브레이싱의 효과)

  • Park, Yong-Myung;Joe, Woom-Do-Ji;Hwang, Min-Oh;Yoon, Tae-Yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.417-429
    • /
    • 2008
  • This paper presents an experimental result to evaluate the redundancy in continuous span two plate-girder bridges which are generally classified as a non-redundant load path structure. The experiments were performed when one of the two girders is seriously cracked. To estimate the effects of bottom lateral bracing on the redundancy, the experiment variable was considered as the bottom lateral bracing, and two 1/5-scaled bridge specimens with and without lateral bracing system were fabricated. The ultimate loading tests were conducted on the damaged specimens with an induced crack at a girder in the side span. The test results showed that the load carrying capacity of damaged specimen with bracing was about 1.2 times higher than that without bracing. To evaluate the redundancy in each specimen, numerical analysis was performed to calibrate the difference of dead load between the actual bridge and the test specimens. When the dead load calibration is considered, the results showed that a continuous span two-girder bridges have a reasonable redundancy even without lateral bracing. Especially, the level of redundancy is increased by about 1.8 times when the lateral bracing is provided.

Fault-tree based reliability analysis for paralleled half-bridge sub-module of HVDC (HVDC 병렬 하프브리지 서브모듈에 대한 고장나무기반의 신뢰성 분석)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1218-1223
    • /
    • 2019
  • In HVDC systems, the full-bridge submodule increases the number of components compared to the half-bridge submodule, but the failure-rate can be reduced by securing 100 % redundancy. However, full-bridge submodules require more complex control algorithms to ensure the redundancy and to prevent arm-short with sufficient dead-time. To solve this problem, we analyse the failure-rate of the paralleled half-bridge configuration with the same number of components and 100 % redundancy as the full-bridge submodule. The fault tree analysis (FTA) method is applied to the conventional part failure analysis to reflect the operation risk of the submodule, thereby predicting the life-cycle of the submodule more accurately. To verify the validity, the failure-rate results of the proposed FTA based analysis method are compared with the failure rate obtained by the part failure method.

Forward Kinematic Analysis of Casing Oscillator (케이싱 오실레이터의 순기구학 해석)

  • Nam, Yun-Joo;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1845-1855
    • /
    • 2004
  • This paper presents the forward kinematics of the Casing Oscillator that is a construction machine. The Structure of the Casing Oscillator is similar to those of 4 degree-of-freedom mechanisms with a redundancy. With analytical (geometrical) methods, the solutions of the forward position kinematics problem are significantly found by both solving an 8$^{th}$ -order polynomial equation in one unknown variable and using one over-constraint geometrical equation which can be derived under the condition of a redundancy. The proposed forward kinematics has closed-form solutions and allows Auto-Balancing control of the moving platform in real time. Numerical examples are presented and the results are verified by an inverse kinematics analysis.