• Title/Summary/Keyword: reduction-oxidation reaction

Search Result 424, Processing Time 0.032 seconds

Environmental Leachability of Electric Arc Furnace Dust for Applying as Hazardous Material Treatment (제강분진을 이용한 유해물질 처리기술 적용을 위한 안전성 평가)

  • Lee, Sang-Hoon;Kang, Sung-Ho;Kim, Jee-Hoon;Chang, Yoon-Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • Iron manufacturing process involves production of various by-product including slag, sludge, sintering and EAF(Electric Arc furnace dust). Some of the by-products such as EAF and sintering dust are disposed of as waste due to their high heavy metal contents. It has been notice for many years that the EAF dust also contain about 65% of Fe(0) and Fe(II) and then the possible utilization of the iron. One possibility is to apply the EAF as a lining material in conjunction with clay or HDPE liners, in waste landfill. The probable reaction between the leachate containing toxic elements such as TCE, PCE dioxine and $Cr^{6+}$ is reduction of the toxic materials in corresponding to the oxidation of the reduced iron and therefore diminishing the toxicity of the leachate. It is, however, prerequisite to evaluate the leaching characteristics of the EAF dust before application. Amelioration of the leachate would be archived only when the level of toxic elements in the treated leachate is less than that of in the untreated leachate. Several leaching techniques were selected to cover different conditions and variable environments including time, pH and contact method. The testing methods include availability test, pH-stat test and continuous column test. Cr and Zn are potentially leachable elements among the trace metals. The pH of the EAF dust is highly alkaline, recording around 12 and Zn is unlikely to be leached under the condition. On the contrary Cr is more leachable under alkaline environment. However, the released Cr should be reduced to $Cr^{3+}$ and then removed as $Cr(OH)_3$. Removal of the Cr is observed in the column test and further study on the specific reaction of Cr and EAF dust is underway.

Measurement of the Quantity of Hydrogen Peroxide Produced in the Ultrasound-irradiated Aqueous Solution of Organic Compounds (초음파를 조사(照射)한 유기화합물 수용액 속에서의 과산화수소 생성량의 측정)

  • Mo, Se-Young;Chang, Hong-Ki;Lee, Kyung-Jae;Jang, Gun-Eik;Sohn, Jong-Ryeul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.61-71
    • /
    • 2000
  • When irradiate the power ultrasound into the aqueous solutions, water vapor is decomposed by the heat of very high temperature in the cavitation bubble to produce OH (hydroxyl radical) and H (hydrogen radical), and these radicals play a role in decomposing the substances in aqueous solution by oxidation and/or reduction, and in producing the hydrogen peroxide. Accordingly it is possible to predict that the quantity of hydrogen peroxide produced may correlate with the sonolysis mechanism of the substance in aqueous solution. Thus to confirm this prediction, the quantities of hydrogen peroxide produced from each of the air saturated distilled water and three aqueous solutions of TCE, benzene, and 2,4-DCP that are prepared by dissolving them into distilled water are measured. As a result, it showed that the quantity of hydrogen peroxide produced from the distilled water and three aqueous solutions are increased in order of distilled water>TCE solution>2,4-DCP solution>benzene solution, and decrease with decrease in concentration of organic substance, which coincide with the sonolysis mechanisms reported that TCE in aqueous solution is decomposed directly by the pyrolysis in and around the cavitation bubbles when its concentration is high and by the radical reaction when low, however, benzene and 2,4-DCP are decomposed not only by the pyrolysis but also by the radical reactions. Effects of such experimental parameters as the acoustic frequency and power and as the concentration showed that the higher the acoustic frequency and the lower the acoustic power, the less the quantity of hydrogen peroxide was produced. This result coincide with the theory of ultrasound for the relation between the cavitation that is the energy source of the power ultrasound in aqueous solution and these experimental parameters.

  • PDF

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.

EFFECT OF 10% CARBAMIDE PEROXIDE ON DENTIN (상아질에 대한 10% Carbamide peroxide가 미치는 영향)

  • Seo, Sang-Woo;Kown, Yong-Hoon;Kim, Hyun-Jung;Nam, Soon-Hyeun;Kim, Kyo-Han;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.423-430
    • /
    • 2003
  • The teeth bleaching with bleaching agent is widely used at recent times. Until yet the exact mechanism of the bleaching agent isn't known but it is thought that is by the complex reduction-oxidation reaction of the decomposed free radical from bleaching agent through various ways. In other words, it is supposed that the teeth are whitened by agent's changing chemical structures of stain-causing materials. The purpose of this study is to exam the change of the dentinal character by bleaching agent and to evaluate the safety of this agent. For this study, after applying 10% carbamide peroxide to enamel of human premolar for 6 hours a day for 2 weeks we examined changes of surface morphology, microhardness, composition and contents of minirals in human dentin using SEM, microhardness tester, FT-Raman spectrometer and EPMA and got following results. There was no significant difference in surface morphologic change when we examined the effect of 10% carbamide peroxide which penetrated into dentin after applied on enamel surface comparing with result from specimen in distilled water No change was shown on the surface of peritubular and intertubular dentin within the nanometeric range. The microhardness between bleached teeth and teeth stored in distilled water showed no statistically significant difference FT-Raman spectra of dentin exhibited no change of the component in human dentin. Only the least change in peaks of organic and inorganic materials were detected in Raman intencity. The total content of mineral elements in dentin with no treatment, stored only in distilled water and stored in distilled water after bleaching were $98.73{\pm}1.89,\;98.56{\pm}2.11\;and\;97.47{\pm}2.51$ respectively. Also they showed no statistically significant difference. From above results, the effect of 10% carbamide peroxide bleaching on structure of dentin is very low and the results may confirm the safety of this bleaching agent.

  • PDF

A Study on the Manufacture of the Artificial Cardiac Tissue Valve (생체판의 제작 및 실험)

  • Kim, Hyoung-Mook;Song, Yo-Jun;Sohn, Kwang-Hyun
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.383-394
    • /
    • 1979
  • Treatment of valvular heart disease with valve replacement has been one of the most popular procedures in cardiac surgery recently. Although, first effort was directed toward the prosthetic valve, it soon became popular that bioprosthesis, the valvular xenograft, was prefered in the majority cases. Valvular xenograft has some superiority to the artificial prosthetic valve in some points of thromboembolism and hemolytic anemia, and it also has some inferiority of durability, immunologic reaction and resistance to Infection. Tremendous efforts were made to cover the inferiority with several methods of collection, preservation, and valve mounting of the porcine valve or pericardium of the calf, and also with surgical technique of the valvular xenograft replacement. Auther has collected 320 porcine aortic valves immediately after slaughter, and aortic cusps were coapted with cotton balls in the Valsalva sinuses to protect valve deformity after immersion in the Hanks' solution, and oxidation, cross-linking and reduction procedures were completed after the proposal of Carpentier in 1972. Well preserved aortic valves were suture mounted in the hand-made tissue valve frame of 19, 21, and 23 mm J.d., and also in the prosthetic vascular segment of 19 mm Ld. with 4-0 nylon sutures after careful trimming of the aortic valves. Completed valves were evaluated with bacteriologic culture, pressure tolerance test with tolerane gauge, valve durability test in the saline glycerine mixed solution with tolerance test machine in the speed of 300 rpm, and again with pathologic changes to obtain following results: 1. Bacteriologic culture of the valve tissue in five different preservation method for two weeks revealed excellent and satisfactory result in view of sterilization including 0.65% glutaraldehyde preservation group for one week bacteriologic culture except one tissue with Citobacter freundii in 75% ethanol preserved group. 2. Pressure tolerance test was done with an apparatus composed of V-connected manometer and pressure applicator. Tolerable limit of pressure was recorded when central leaking jet of saline was observed. Average pressure tolerated in each group was 168 mmHg in glutaraldehyde, 128 mmHg in formaldehyde, 92 mmHg in Dakin's solution, 48 mmHg in ethylene oxide gas, and 26 mmHg in ethanol preserved group in relation to the control group of Ringer's 90 mmHg respectively. 3. Prolonged durability test was performed in the group of frame mounted xenograft tissue valve with 300 up-and-down motion tolerance test machine/min. There were no specific valve deformity or wearing in both 19, 21, and 23 mm valves at the end of 3 months (actually 15 months), and another 3 months durability test revealed minimal valve leakage during pressure tolerance test due to contraction deformity of the non-coronary cusp at the end of 6 months (actually 30 months) in the largest 23 mm group. 4. Histopathologic observation was focussed in three view points, endothelial cell lining, collagen and elastic fiber destructions in each preservation methods and long durable valvular tolerance test group. Endothel ial cell lining and collagen fiber were well preserved in the glutaraldehyde and formaldehyde treated group with minimal destruction of elastic fiber. In long durable tolerance test group revealed complete destruction of the endothelial cell lining with minimal destruction of the collagen and elastic fiber in 3 month and 6 month group in relation to the time and severity. In conclusion, porcine xenograft treated after the proposal of Carpentier in 1972 and preserved in the glutaraldehyde solution was the best method of collection, preservation and valve mounting. Pressure tolerance and valve motion tolerance test, also, revealed most satisfactory results in the glutaraldehyde preserved group.

  • PDF

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.

Changes of Meat Quality and Antioxidation Activity in the Loin and Ham of Korean Native Black Pigs during Frozen Storage (재래흑돼지고기의 냉동저장기간 동안의 품질 및 항산화 특성 변화)

  • Gil, Juae;Kim, Dongwook;Kim, Hee-Jin;Yoon, Ji-Yeol;Pak, Jae-In;Park, Beom-Young;Ham, Jun-Sang;Jang, Aera
    • Journal of Life Science
    • /
    • v.25 no.7
    • /
    • pp.740-747
    • /
    • 2015
  • This study was carried out to evaluate changes in the meat quality and antioxidation activity in the loin and ham of Korean Native Black Pigs (KNBP) during frozen storage at −18℃ for 150 days. The pH value of the loin was decreased as storage days progressed, while the pH value of the ham showed no consistent changes with storage days. The lightness (L*) of the loin did not show any significant reduction until day 120, whereas L* of the ham was significantly declined throughout the storage period (p<0.05). The redness (a*) values of the loin and ham were significantly decreased as storage progressed. The water holding capacity of the loin was decreased by day 30 and that value was maintained until the end of storage. The initial total numbers of microorganisms in the loin and ham were 4.88 and 5.16 Log CFU/g, respectively and these numbers were significantly decreased by day 30 (p<0.05). The levels of 2-thiobarbituric acid reactive substances (a measurement of lipid oxidation) in the loin and ham ranged from 0.057-0.069 and 0.052-0.087 mg MDA/kg meat, respectively, until storage day 150. Volatile basic nitrogen values of the loin and ham ranged from 15.13-16.55 and 16.05-16.23 mg%. Oxygen radical absorbance capacities and carnosine contents of the loin and ham were significantly decreased during frozen storage for 3 months (p<0.05). In summary, the meat quality of the loin and ham from KNBP was somewhat decreased during frozen storage. However, the levels of antioxidants and dipeptides with antioxidant activity were significantly decreased in pork loin and ham during frozen storage.