Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.6.737

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries  

Jaehoon Choi (Department of Earth and Environmental Sciences, Korea University)
Soonyoung Yu (Korea Institute of Geoscience and Mineral Resources)
SunJu Park (Earth E&G)
Junghoon Park (Earth E&G)
Seong-Taek Yun (Department of Earth and Environmental Sciences, Korea University)
Publication Information
Economic and Environmental Geology / v.55, no.6, 2022 , pp. 737-760 More about this Journal
Abstract
For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.
Keywords
High-level radioactive waste (HLW); Deep geologic disposal; Deep groundwater; Hydrogeochemical characterization; Underground research laboratory (URL);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wallin, B. and Peterman, Z. (1999) Calcite fracture fillings as indicators of paleohydrology at Laxemar at the Aspo Hard Rock Laboratory, southern Sweden. Applied Geochemistry, v.4, p.953-962. doi: 10.1016/S0883-2927(99)00028-1   DOI
2 Wersin, P. (2003) Geochemical modelling of bentonite porewater in high-level waste repositories. Journal of Contaminant Hydrology, v.61, p.405-422. doi: 10.1016/S0169-7722(02)00119-5   DOI
3 Wersin, P., Johnson, L.H. and McKinley, I.G. (2007) Performance of the bentonite barrier at temperatures beyond 100 ℃: A critical review. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.780-788. doi: 10.1016/J.PCE.2006.02.051   DOI
4 White, A.F., Bullen, T.D., Vivit, D.V., Schulz, M.S. and Clow, D.W. (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochimica et Cosmochimica Acta, v.63, p.1939-1953. doi: 10.1016/S0016-7037(99)00082-4   DOI
5 White, A.F., Schulz, M.S., Lowenstern, J.B., Vivit, D.V. and Bullen, T.D. (2005) The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis. Geochimica et Cosmochimica Acta, v.69, p.1455-1471. doi: 10.1016/j.gca.2004.09.012   DOI
6 Witherspoon, P.A. (2000) The Stripa project. International Journal of Rock Mechanics and Mining Sciences, v.37, p.385-396. doi: 10.1016/S1365-1609(99)00113-6   DOI
7 Wu, Y. S., Ritcey, A. C. and Bodvarsson, G.S. (1999) A modeling study of perched water phenomena in the unsaturated zone at Yucca Mountain. Journal of Contaminant Hydrology, v.38, p.157-184. doi: 10.1016/S0169-7722(99)00015-7   DOI
8 Yang, I.C., Yu, P., Rattray, G.W., Ferarese, J.S. and Ryan, J.N. (1998) Hydrochemical Investigations in Characterizing the Unsaturated Zone at Yucca Mountain, Nevada. Water-Resources Investigation Report 98-4132. USGS. doi: 10.2172/677016
9 Zhang, M., Zhang, H., Cui, S., Jia, L., Zhou, L. and Chen, H. (2012) Engineering properties of GMZ bentonite-sand as buffer/backfilling material for high-level waste disposal. European Journal of Environmental and Civil Engineering, v.16, p.1216-1237. doi: 10.1080/19648189.2012.690934   DOI
10 Aalto, P., Aaltonen, I. and Kemppainen, K. (2009) Programme for repository host rock characterisation in the ONKALO (ReRoC). https://inis.iaea.org/search/search.aspx?orig_q=RN:43066563
11 Ahlers, C.F., Finsterle, S. and Bodvarsson, G.S. (1999) Characterization and prediction of subsurface pneumatic response at Yucca Mountain, Nevada. Journal of Contaminant Hydrology, v.38, p.47-68. doi: 10.1016/S0169-7722(99)00011-X   DOI
12 Aikin, A.M., Harrison, J.M. and Hare, F.K. (1977) The management of Canada's nuclear wastes. https://inis.iaea.org/search/search.aspx?orig_q=RN:9399170
13 Alley, W.M. and Parker, B.L. (2014) Geologic Disposal of Spent Nuclear Fuel: An Earth Science Perspective. https://www.researchgate.net/publication/269994551
14 ANDRA (2020) The Cigeo Project France's Industrial Centre for Geological Disposal of radioactive waste.
15 Andrews, J.N., Fontes, J.C., Fritz, P. and Nordstrom, K. (1988) Hydrogeochemical Assessment of Crystalline Rock for Radioactive Waste Disposal: The Stripa Experience. Technical Report, SKB.
16 Bath, A. (2002) Geochemical Parameters Required from the SKB Site Characterisation Programme S i SKI Perspective Background.
17 BGE (2020) Sub-areas Interim Report pursuant to Section 13 StandAG.
18 Birkholzer, J., Houseworth, J. and Tsang, C.F. (2012) Geologic disposal of high-level radioactive waste: status, key issues, and trends. Annual Review of Environment and Resources, v.37, p.79-106. doi: 10.1146/annurev-environ-090611-143314   DOI
19 Bossart, P., Bernier, F., Birkholzer, J., Bruggeman, C., Connolly, P., Dewonck, S., Fukaya, M., Herfort, M., Jensen, M., Matray, J.-M., Mayor, J.C., Moeri, A., Oyama, T., Schuster, K., Shigeta, N., Vietor, T. and Wieczorek, K. (2017) Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments. Swiss Journal of Geosciences, v.110, p.3-22. doi: 10.1007/s00015-016-0236-1   DOI
20 Bodvarsson, G.S., Boyle, W., Patterson, R. and Williams, D. (1999) Overview of scientific investigations at Yucca Mountain - the potential repository for high-level nuclear waste. Journal of Contaminant Hydrology, v.38, p.3-24. doi: 10.1016/S0169-7722(99)00009-1   DOI
21 Bossart, P. and Thury, M. (2007) Research in the Mont Terri Rock laboratory: Quo vadis? Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.19-31. doi: 10.1016/J.PCE.2006.04.031   DOI
22 Bredehoeft, J.D. and Maini, T. (1981) Strategy for radioactive waste disposal in crystalline rocks. Science, v.213, p.293-296 doi: 10.1126/science.213.4505.293   DOI
23 Charlier, F. (2019) Comparative Survey of International Repository Projects. Mining Report Glukauf, v.15, no.5, p.454-465.
24 Brewitz, W. and Rothfuchs, T. (2007) Concepts and Technologies for Radioactive Waste Disposal in Rock Salt. In Acta Montanistica Slovaca Rocnik, v.12, p.67-74.
25 Brookins, D.G. (1984) Geochemical aspects of radioactive waste disposal. doi: 10.1007/978-1-4613-8254-6   DOI
26 Chae, G.T., Yun, S.T., Kim, K. and Mayer, B. (2006) Hydrogeochemistry of sodium-bicarbonate type bedrock groundwater in the Pocheon spa area, South Korea: water-rock interaction and hydrologic mixing. Journal of Hydrology, v.321, p.326-343. doi: 10.1016/j.jhydrol.2005.08.006   DOI
27 Delay, J., Lebon, P. and Rebours, H. (2010) Meuse/Haute-Marne centre: next steps towards a deep disposal facility. Journal of Rock Mechanics and Geotechnical Engineering, v.2, p.52-70. doi: 10.3724/SP.J.1235.2010.00052   DOI
28 Delay, J., Rebours, H., Vinsot, A. and Robin, P. (2007) Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.42-57. doi: 10.1016/J.PCE.2005.11.004   DOI
29 Delay, J., Vinsot, A., Krieguer, J.M., Rebours, H. and Armand, G. (2007) Making of the underground scientific experimental programme at the Meuse/Haute-Marne underground research laboratory, North Eastern France. Physics and Chemistry of the Earth, Parts A/B/C, v.32, p.2-18. doi: 10.1016/J.PCE.2006.04.033   DOI
30 Dideriksen, K., Christiansen, B.C., Baker, J.A., Frandsen, C., Balic-Zunic, T., Tullborg, E., Morup, S. and Stipp, S.L.S. (2007) Feoxide fracture fillings as a paleo-redox indicator: structure, crystal form and Fe isotope composition. Chemical Geology, v.244, p.330-343. doi: 10.1016/j.chemgeo.2007.06.027   DOI
31 Fairhurst, C., Gera, F., Gnirk, P., Gray, M. and Stillborg, B. (1993) The International Stripa Project: an overview. Tunnelling and Underground Space Technology, v.8, p.315-343. doi: 10.1016/0886-7798(93)90018-Q   DOI
32 Doughty, C. (1999a) Investigation of conceptual and numerical approaches for evaluating moisture, gas, chemical, and heat transport in fractured unsaturated rock. Journal of Contaminant Hydrology, v.38, p.69-106. doi: 10.1016/S0169-7722(99)00012-1   DOI
33 Doughty, C. (1999b) Investigation of conceptual and numerical approaches for evaluating moisture, gas, chemical, and heat transport in fractured unsaturated rock. Journal of Contaminant Hydrology, v.38, p.69-106. doi: 10.1016/S0169-7722(99)00012-1   DOI
34 Eichinger, F., Hammerli, J., Waber, H.N., Diamond, L.W. and Smellie, J.A.T. (2013) Chemistry and Dissolved Gases of Matrix Pore Water and Fluid Inclusions in Olkiluoto Bedrock From Drillhole ONK-PH9. IAEA Working Report 2011-63.
35 Garcia-Gutierrez, M., Cormenzana, J.L., Missana, T., Mingarro, M., Alonso, U., Samper, J., Yang, Q. and Yi, S. (2008) Diffusion experiments in Callovo-Oxfordian clay from the Meuse/Haute-Marne URL, France. Experimental setup and data analyses. Physics and Chemistry of the Earth, Parts A/B/C, v.33(SUPPL. 1), p.S125-S130. doi: 10.1016/J.PCE.2008.10.019   DOI
36 Gaucher, E., Robelin, C., Matray, J.M., Negrel, G., Gros, Y., Heitz, J.F., Vinsot, A., Rebours, H., Cassagnabere, A. and Bouchet, A. (2004) ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling. Physics and Chemistry of the Earth, Parts A/B/C, v.29, p.55-77. doi: 10.1016/J.PCE.2003.11.006   DOI
37 Grambow, B. (2016) Geological disposal of radioactive waste in Clay. Elements, v.12, p.239-245. doi: 10.2113/gselements.12.4.239   DOI
38 Gimeno, M.J., Auque, L.F., Acero, P. and Gomez, J.B. (2014) Hydrogeochemical characterisation and modelling of groundwaters in a potential geological repository for spent nuclear fuel in crystalline rocks (Laxemar, Sweden). Applied Geochemistry, v.45, p.50-71. doi: 10.1016/j.apgeochem.2014.03.003   DOI
39 Gimmi, T. and Waber, H.N. (2004) Modeling of Tracer Profiles in Pore Water of Argillaceous Rocks in the Benken Borehole: Stable Water Isotopes, Chloride, and Chlorine Isotopes. Technical Report 04-05, NAGRA.
40 Gomez, J.B., Gimeno, M.J., Auque, L.F. and Acero, P. (2014) Characterisation and modelling of mixing processes in groundwaters of a potential geological repository for nuclear wastes in crystalline rocks of Sweden. Science of the Total Environment, v.468-469, p.791-803. doi: 10.1016/j.scitotenv.2013.09.007   DOI
41 Grauer, R. (1994) Bentonite as a Backfill Material in a High-Level Waste Repository. MRS Bulletin, v.19, p.43-46. doi: 10.1557/S0883769400048697   DOI
42 Hall, D.S., Behazin, M., Jeffrey, B.W. and Keech, P.G. (2021) An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository. Progress in Materials Science, v.118, p.100766. doi: 10.1016/J.PMATSCI.2020.100766   DOI
43 Hansen, F.D., Hardin, E.L., Rechard, R.P., Freeze, G.A., Sassani, D.C., Brady, P.V., Stone, C.M., Martinez, M.J., Holland, J.F., Dewers, T., Gaither, K.N., Sobolik, S.R. and Cygan, R.T. (2010) Shale Disposal of U.S. High-Level Radioactive Waste. doi: 10.2172/992338
44 Haukwa, C.B., Wu, Y.S. and Bodvarsson, G.S. (1999) Thermal loading studies using the Yucca Mountain unsaturated zone model. Journal of Contaminant Hydrology, v.38, p.217-255. doi: 10.1016/S0169-7722(99)00016-9   DOI
45 IAEA (2002) Issues and Trends in Radioactive Waste Management. Proceedings od an International Conference (Vienna, 2002). IAEA.
46 Hedin, A. (1997) Spent nuclear fuel - How dangerous is it? A report from the project 'Description of risk'. Technical Report 97-13, IAEA.
47 Hoyer, E.M., Luijendijk, E., Muller, P., Kreye, P., Panitz, F., Gawletta, D. and Ruhaak, W. (2021) Preliminary safety analyses in the high-level radioactive waste site selection procedure in Germany. Advances in Geosciences, v.56, p.67-75. doi: 10.5194/adgeo-56-67-2021   DOI
48 Hu, Q.H., Rose, T.P., Zabarin, N., Smith, D.K., Moran, J.E. and Zhao, P. H. (2006) Assessing field-scale migration of radionuclides at the Nevada Test Site: "Mobile" species. Journal of Environmental Radioactivity, v.99, p.1617-1630. doi: 10.1016/j.jenvrad.2008.06.007   DOI
49 IAEA (2003) Scientific and Technical Basis for the Geological Disposalof Radioactive Wastes. Technical Report Series, No. 413, IAEA.
50 IAEA (2015) INPRO Dialogue Forum on Cooperative Approaches to the Back End of the Nuclear Fuel Cycle: Drivers and Legal, Institutional and Financial Impediments. International Conference on the Management of Spent Fuel from Nuclear Power Reactors, IAEA.
51 Ingebritsen, S.E., Sanford, W.E. and Neuzil, C.E. (2006) Groundwater in Geologic Processes. Cambridge University Press.
52 JNC (2000) H12: Project to Establish the Scientific and Technical Basis for HLW Disposal, JNC.
53 Karnbranslehantering, S. (2005) Hydrogeochemical evaluation Preliminary site description Forsmark area - version 1.2, Svensk Karnbranslehantering AB. www.skb.se
54 Kondo, S. (2021) Strategies and Practices to Enhance Public Awareness for Implementing Radioactive Waste Management Programmes in Japan. https://inis.iaea.org/search/search.aspx?orig_q=RN:53084517
55 Kaul, A. and Rothemeyer, H. (1997) Investigation and evaluation of the Gorleben site: a status report. In Nuclear Engineering and Design, v.176, p.83-88, doi: 10.1016/S0029-5493(96)01345-3.   DOI
56 Kharecha, P.A. and Hansen, J.E. (2013) Prevented Mortality and Greenhouse Gas Emissions from Historical and Projected Nuclear Power Terms of Use. Environmental Science and Technology, v.47, p.4889-4895. doi: 10.1021/es3051197   DOI
57 Kim, K.H., Yun, S.T., Yu, S., Choi, B.Y., Kim, M.J. and Lee, K.J. (2020) Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. Journal of Hydrology, v.589, article 125202. doi: 10.1016/j.jhydrol.2020.125202   DOI
58 Kong, D.C., Dong, C.F., Xiao, K. and Li, X.G. (2017) Effect of temperature on copper corrosion in high-level nuclear waste environment. Transactions of Nonferrous Metals Society of China, v.27, p.1431-1438. doi: 10.1016/S1003-6326(17)60165-1   DOI
59 Krall, L., Evins, L.Z., Kooijman, E., Whitehouse, M. and Tullborg, E.L. (2019) Tracing the palaeoredox conditions at Forsmark, Sweden, using uranium mineral geochronology. Chemical Geology, v.506, p.68-78. doi: 10.1016/J.CHEMGEO.2018.12.013   DOI
60 Laaksoharju, M., Ab, G., Smellie, J., Gimeno, M., Auque, L., Gomez, J. and Karnbranslehantering, S. (2004) Hydrogeochemical evaluation of the Simpevarp area, model version 1.1. www.skb.se
61 Laaksoharju, M., Skarman, C. and Skarman, E. (1999) Multivariate mixing and mass balance (M3) calculations, a new tool for decoding hydrogeochemical information. Applied Geochemistry, v.14, p.861-871. doi: 10.1016/S0883-2927(99)00024-4   DOI
62 Mazurek, M., Pearson, F.J., Volckaert, J., and Bock, H. (2003) Features, events and processes evaluation catalogue for argillaceous media. Organisation for Economic Co-operation and Development - Nuclear Energy Agency, Paris.
63 Laaksoharju, M., Smellie, J., Tullborg, E.L., Gimeno, M., Molinero, J., Gurban, I. and Hallbeck, L. (2008) Hydrogeochemical evaluation and modelling performed within the Swedish site investigation programme. Applied Geochemistry, v.23, p.1761-1795. doi: 10.1016/J.APGEOCHEM.2008.02.015   DOI
64 Mariner, P.E., Lee, J.H., Hardin, E.L., Hansen, F.D., Freeze, G.A., Lord, A.S., Goldstein, B. and Price, R.H. (2011) Granite Disposal of U.S. High-Level Radioactive Waste. doi: 10.2172/1029794
65 Matsumoto, T., Hyodo, H., Saegusa, H., Deguchi, A. and Umeki, H. (2017) Scientific Basis for Nationwide Screening Geological Disposal Sites in Japan. http://www.enecho.meti.go.jp/category/electricity_a
66 McEwen, T. and Aikas, T. (2000) The site selection process for a spent fuel repository in Finland. Summary Report. Posiva Oy.
67 Melkior, T., Yahiaoui, S., Motellier, S., Thoby, D. and Tevissen, E. (2005) Cesium sorption and diffusion in Bure mudrock samples. Applied Clay Science, v.29, p.172-186. doi: 10.1016/J.CLAY.2004.12.008   DOI
68 Milnes, A.G. (2002) Swedish deep repository siting programme - Guide to the documentation of 25 years of geoscientific research (1976-2000). Technical Report TR-02-18, SKB.
69 NAGRA (2010) Annual Report 2010, Wettingen, Switzerland.
70 NEA and OECD (2003) Engineered barrier systems and the safety of deep geological repositories : state-of-the-art report. OECD Publishing.
71 NUMO (2004) Evaluating Site Suitability for a HLW Repository Scientific Background and Practical Application of NUMO's Siting Factors.
72 Nilsson, A.-C., Ab. G., Tullborg, E.L. and others (2011). Svensk Karnbranslehantering AB. SFR site investigation Bedrock Hydrogeochemistry. Report, SKB. www.skb.se.
73 Nordstrom, D.K., Andrews, J.N. and Fritz, P. (1985) Hydrogeological and Hydrogeochemical Investigations in Boreholes. Final report of the phase I. Geochemical investigations of the Stripa groundwaters. Technical Report, SKB.
74 Nuclear Energy Agency (2013) Underground Research laboratories (URL). www.oecd-nea.org
75 Ouzounian, G., Harman, A., Labalette, T. and Dupuis, M.-C. (2014) Cigeo, the Project for Geological Disposal Project of Radioactive Waste in France.
76 Pitkanen, P., Partamies, S., Ahokas, S. and others (2006) Results of Monitoring at Olkiluoto in 2006. Hydrogeochemistry. Posiva Technical Report, POSIVA-WR-07-51.
77 Posiva Oy (2001) Hydrochemical stability of groundwaters surrounding a spent nuclear fuel repository in a 100,000 year perspective. Posiva Report 2001-06.
78 Posiva Oy (2014) Safety case for the disposal of spent nuclear fuel at Olkiluoto - Description of the Disposal System 2012. Posiva Report 2012-05.
79 Posiva Oy (2010) TKS-2009 nuclear waste management at Olkiluoto and Loviisa power plants: Review of current status and future plans for 2010-2012.
80 Posiva Oy (2011) Olkiluoto Site Description 2011.
81 Raven, K., Sterling, S., Gaines, S., Wigston, A. and Frizzell, R. (2009) Regional and site geological frameworks-proposed Deep Geologic Repository, Bruce County, Ontario. www.nwmo.ca/dgr
82 Pruess, K., Faybishenko, B. and Bodvarsson, G.S. (1999) Alternative concepts and approaches for modeling flow and transport in thick unsaturated zones of fractured rocks. Journal of Contaminant Hydrology, v.38, p.281-322. doi: 10.1016/S0169-7722(99)00018-2   DOI
83 Raven, K.G., Sterling, S.N., Jackson, R.E., Avis, J.D. and Clark, I.D. (2010) Geoscientific site characterization of the proposed Deep Geologic Repository, Tiverton, Ontario.
84 Raven, K., Mccreath, D., Jackson, R., Clark, I., Heagle, D., Sterling, S. and Avis, J. (2010) Descriptive Geosphere Site Model, Deep Geologic Repository Bruce Nuclear Site. Intera Report.
85 Ritcey, A.C. and Wu, Y.S. (1999) Evaluation of the effect of future climate change on the distribution and movement of moisture in the unsaturated zone at Yucca Mountain, NV. Journal of Contaminant Hydrology, v.38, p.257-279. doi: 10.1016/S0169-7722(99)00017-0   DOI
86 Russell, D.J., Gale, J.E. (1982) Radioactive Waste Disposal in the Sedimentary Rocks of Southern Ontario. Geoscience Canada, v.9, p.200-207.
87 Sadekin, S., Zaman, S., Mahfuz, M. and Sarkar, R. (2019) Nuclear power as foundation of a clean energy future: A review. Energy Procedia, v.160, p.513-518. doi: 10.1016/J.EGYPRO.2019.02.200   DOI
88 Sahlstedt, E. (2015) Stable isotope composition of mineral proxies as a record of fluid evolution in fractured bedrock, the Olkiluoto site, Finland. http://ethesis.helsinki.fi
89 Sahlstedt, E., Karhu, J. and Rinne-Garmston, K.T. (2012) Fracture Mineral Investigations at Olkiluoto in 2010: Implications to Paleohydrogeology. Posiva Report 94. doi: 10.13140/RG.2.1.3389.7683   DOI
90 Sahlstedt, E., Karhu, J.A. and Pitkanen, P. (2010) Indications for the past redox environments in deep groundwaters from the isotopic composition of carbon and oxygen in fracture calcite, Olkiluoto, SW Finland. Isotopes in Environmental and Health Studies, v.46, p.370-391. doi: 10.1080/10256016.2010.505981   DOI
91 Salonen, T., Lamminmaki, T., Fraser, K. and Pastina, B. (2020) Status report of the Finnish spent fuel geologic repository programme and ongoing corrosion studies. v.72, p.14-24. doi: 10.1002/maco.202011805   DOI
92 Schneeberger, R., Kober, F., Lanyon, G.W., Mader, U.K., Spillmann, T. and Blechschmidt, I. (2019) Grimsel Test Site: Revisiting the site-specific geoscientific knowledge. www.nagra.ch
93 Schneeberger, R., Mader, U.K. and Waber, H.N. (2017) Hydro-chemical and Isotopic (δ2H, δ18O, 3H) Characterization of Fracture Water in Crystalline Rock (Grimsel, Switzerland). Procedia Earth and Planetary Science, v.17, p.738-741. doi: 10.1016/J.PROEPS.2016.12.187   DOI
94 Seitsamo-Ryynanen, M., Karhu, J.A., Pitkanen, P. and Whitehouse, M. (2022) Isotopic signatures of precent-day calcite and pyrite in low-temperature crystalline bedrock, Olkiluoto, SW Finland. Applied Geochemistry, v.141, article105308. doi: 10.1016/j.apgeochem.2022.105308   DOI
95 Siren, T. (2017) Overview of Finnish Spent Nuclear Fuel Disposal Programme. Journal of the Korean Society of Mineral and Energy Resources Engineers, v.54, p.367-376. doi: 10.12972/ksmer.2017.54.4.367   DOI
96 Smellie, J.A.T. (1999) Evaluation of the quality of groundwater sampling: experience derived from radioactive waste disposal programmes in Sweden and Finland during 1980-1992. Posiva.
97 Strom, A., Andersson, J., Skagius, K. and Winberg, A. (2008) Site descriptive modelling during characterization for a geological repository for nuclear waste in Sweden. Applied Geochemistry, v.23, p.1747-1760. doi: 10.1016/J.APGEOCHEM.2008.02.014   DOI
98 Smellie, J., Larsson, N.-A., Wikberg, P. and Carlsson, L. (1985) Hydrochemical investigations in crystalline bedrock in relation to existing hydraulic conditions: Experience from the SKB test-sites in Sweden. Technical Report 85-11, SKB.
99 Smellie, J., Pitkanen, P., Koskinen, L., Aaltonen, I., Eichinger, F., Waber, N., Sahlstedt, E., Siitari-Kauppi, M., Karhu, J., Lofman, J. and Poteri, A. (2014) Evolution of the Olkiluoto Site: Palaeo-hydrogeochemical Considerations. Working Report 2014-27, IAEA.
100 Sonnenthal, E. L. and Bodvarsson, G.S. (1999) Constraints on the hydrology of the unsaturated zone at Yucca Mountain, NV from three-dimensional models of chloride and strontium geochemistry. Journal of Contaminant Hydrology, v.38, p.107-156. doi: 10.1016/S0169-7722(99)00013-3   DOI
101 Suksi, J., Tullborg, E.-L., Pidchenko, I., Krall, L., Sandstrom, B., Kaksonen, K., Vitova, T., Kvashnina, K. O. and Gottlicher, J. (2021) Uranium remobilisation in anoxic deep rock-groundwater system in response to late Quaternary climate changes - Results from Forsmark, Sweden. Chemical Geology, v.584, p.120551. doi: 10.1016/j.chemgeo.2021.120551   DOI
102 Sung, K.Y., Yun, S.T., Park, M.E., Koh, Y.K., Choi, B.Y., Hutcheon, I. and Kim, K.H. (2012). Reaction path modeling of hydrogeochemical evolution of groundwater in granitic bedrocks, South Korea. Journal of Geochemical Exploration, v.118, p.90-97. doi: 10.1016/J.GEXPLO.2012.05.004   DOI
103 Swift, P.N. and Bonano, E.J. (2016) Geological disposal of nuclear waste in tuff: Yucca Mountain (USA). Elements, v.12, p.263-268. doi: 10.2113/gselements.12.4.263   DOI
104 Tullborg, E.-L., Suksi, J., Geipel, G., Krall, L., Auque, L., Gimeno, M. and Puigdomenech, I. (2017) The Occurrences of Ca2UO2(CO3)3 Complex in Fe(II) Containing Deep Groundwater at Forsmark, Eastern Sweden. Procedia Earth and Planetary Science, v.17, p.440-443. doi: 10.1016/J.PROEPS.2016.12.111   DOI
105 Tullborg, E.L., Drake, H. and Sandstrom, B. (2008) Palaeohydrogeology: a methodology based on fracture mineral studies. Applied Geochemistry, v.23, p.1881-1897. doi: 10.1016/J.APGEOCHEM.2008.02.009   DOI
106 Tullborg, E.L. and Larson, S.A. (1984) δ18O and δ13C for limestones, calcite fissure infillings and calcite precipitates from Sweden. Geologiska Foreningen i Stockholm Forhandlingar, v.106, p.127-130. doi: 10.1080/11035898409454622   DOI
107 Tullborg, E.-L. and Drake, H. (2009). Bedrock hydrogeochemistry Laxemar - Site descriptive modelling, SDM-Site Laxemar. www.skb.se
108 Vira, J. (2017) Geological repository for high-level nuclear waste becoming reality in Finland. In Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste (pp. 645-666). Elsevier. doi: 10.1016/B978-0-08-100642-9.00023-2   DOI
109 Vomvoris, S., Claudel, A., Blechschmidt, I. and Muller, H.R. (2013) The Swiss Radioactive Waste Management Program - Brief History, Status, and Outlook. Journal of Nuclear Fuel Cycle and Waste Technology, v.1, p.9-27. doi: 10.7733/jnfcwt.2013.1.1.9   DOI
110 von Berlepsch, T and Haverkamp, B. (2016) Salt as a host rock for the geological repository for nuclear waste. Elements, v.12, p.257-262. doi: 10.2113/gselements.12.4.257   DOI
111 Waber, H.N., Gimmi, T. and Smellie, J.A.T. (2012) Reconstruction of palaeoinfiltration during the Holocene using porewater data (Laxemar, Sweden). Geochimica et Cosmochimica Acta, v.94, p.109-127. doi: 10.1016/j.gca.2012.06.030   DOI