• Title/Summary/Keyword: reduction of damage

Search Result 1,623, Processing Time 0.036 seconds

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana (애기장대 peroxiredoxins (Prxs)과 sulphiredoxin1 (Srx1)의 작용기작)

  • Kim, Min-Gab;Su'udi, Mukhamad;Park, Sang-Ryeol;Hwang, Duk-Ju;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.20 no.12
    • /
    • pp.1777-1783
    • /
    • 2010
  • Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.

Effects of NaCl on the Growth and Physiological Characteristics of Crepidiastrum sonchifolium (Maxim.) Pak & Kawano (NaCl 처리가 고들빼기의 생장과 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Yoon, Kyeong Kyu;Lee, Hak bong;Song, Jae Mo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Background: This study was conducted to investigate the effects of NaCl concentration on the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of Crepidiastrum sonchifolium. Methods and Results: As treatments, we subjected C. sonchifolium plants to four different concentrations of NaCl (0, 50, 100 and 200 mM). We found that the photosynthetic parameters maximum photosynthesis rate (PN max), net apparent quantum yield (Φ), maximum carboxylation rate (Vcmax), and maximum electron transport rate (Jmax) were significantly reduced at an NaCl concentration greater than 100 mM. In contrast, there was an increase in water-use efficiency with increasing NaCl concentration, although in terms of growth performances, leaf dry weight, root dry weight, stem length, and total dry weight all decreased with increasing NaCl concentration. Furthermore, leakage of electrolytes, as a consequence of cell membrane damage, clearly increased in response to an increase in NaCl concentration. Analysis of the polyphasic elevation of chlorophyll a fluorescence transients (OKJIP) revealed marked decrease in flux ratios (ΦPO, ΨO and ΦEO) and the PIabs, performance index in response to treatment with 200 mM NaCl, thereby reflectings the relatively reduced state of photosystem II. This increase in fluorescence could be due to a reduction in electron transport beyond Q-A. We thus found that the photosynthetic parameters, chlorophyll fluorescence and growth characteristics of C. sonchifolium significantly increased in response to treatment with 200 mM NaCl. Conclusions: Collectively, the findings of this study indicate that C. sonchifolium shows relatively low sensitivity to NaCl stress, although photosynthetic activity was markedly reduced in plants exposed to 200 mM NaCl.

Behavior of RC beams strengthened with NSM CFRP strips under flexural repeated loading

  • Fathuldeen, Saja Waleed;Qissab, Musab Aied
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.67-80
    • /
    • 2019
  • Strengthening with near surface mounted carbon fibre reinforced polymers (NSM-CFRP) is a strengthening technique that have been used for several decades to increase the load carrying capacity of reinforced concrete members. In Iraq, many concrete buildings and bridges were subjected to a wide range of damage as a result of the last war and many other events. Accordingly, there is a progressive increase in the strengthening of concrete structures, bridges in particular, by using CFRP strengthening techniques. Near-surface mounted carbon fibre polymer has been recently proved as a powerful strengthening technique in which the CFRP strips are sufficiently protected against external environmental conditions especially the high-temperature rates in Iraq. However, this technique has not been examined yet under repeated loading conditions such as traffic loads on bridge girders. The main objective of this research was to investigate the effectiveness of NSM-CFRP strips in reinforced concrete beams under repeated loads. Different parameters such as the number of strips, groove size, and two types of bonding materials (epoxy resin and cement-based adhesive) were considered. Fifteen NSM-CFRP strengthened beams were tested under concentrated monotonic and repeated loadings. Three beams were non-strengthened as reference specimens while the remaining were strengthened with NSM-CFRP strips and divided into three groups. Each group comprises two beams tested under monotonic loads and used as control for those tested under repeated loads in the same group. The experimental results are discussed in terms of load-deflection behavior up to failure, ductility factor, cumulative energy absorption, number of cycles to failure, and the mode of failure. The test results proved that strengthening with NSM-CFRP strips increased both the flexural strength and stiffness of the tested beams. An increase in load carrying capacity was obtained in a range of (1.47 to 4.49) times that for the non-strengthened specimens. Also, the increase in total area of CFRPs showed a slight increase in flexural capacity of (1.02) times the value of the control strengthened one tested under repeated loading. Increasing the total area of CFRP strips resulted in a reduction in ductility factor reached to (0.71) while the cumulative energy absorption increased by (1.22) times the values of the strengthened reference specimens tested under repeated loading. Moreover, the replacement of epoxy resin with cement-based adhesive as a bonding material exhibited higher ductility than specimen with epoxy resin tested under monotonic and repeated loading.

Identification, Enzymatic Activity, and Decay Ability of Basidiomycetous Fungi Isolated from the Decayed Bark of Mongolian Oak (Quercus mongolica Fisch. ex Ledeb.)

  • Nguyen, Manh Ha;Kim, Dae Ho;Park, Ji Hyun;Park, Young Ui;Lee, Moo Yeul;Choi, Myeong Hee;Lee, Dong Ho;Lee, Jong Kyu
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.52-61
    • /
    • 2021
  • Decay fungi can decompose plant debris to recycle carbon in the ecosystem. Still, they can also be fungal pathogens, which can damage living trees and/or wood material and cause a large amount of timber loss. We isolated and identified basidiomycetous fungi from the decayed bark of Mongolian oak wrapped with sticky roll traps. The degrading enzyme activities were then tested for all fungal isolates. The decay ability of selected isolates was assessed based on the weight loss of wood discs after inoculating with culture suspension of decay fungi under the different humidity levels. A total of 46 basidiomycetous fungal isolates belonged to 12 species, and 10 genera were obtained from Jong Myo (16 isolates), Chang Kyung palace (7 isolates), Cheong Gye (10 isolates), and Gun Po (13 isolates). Gymnopus luxurians was the most dominant fungus in the present study, and this species distributed in all survey sites with 9 isolates in Jong Myo, followed by 3 isolates in Chang Kyung palace, while Cheong Gye and Gun Po had only 1 isolate each. Among 46 isolates, 44 isolates secreted at least one enzyme, while 25 isolates produced both cellulase and phenol oxidase enzymes, and 2 isolates produced neither. The assessment of decay ability by artificial inoculation indicated that the weight loss of wood discs was significantly influenced by humidity conditions when inoculated with bark decay fungi. The percent weight losses by G. luxurians inoculation in RH of 90-100% and RH of 65-75% were 4.61% and 2.45%, respectively. The weight loss caused by Abortiporus biennis were 6.67% and 0.46% in RH of 90-100% and RH of 45-55%, respectively. The humidity reduction approach should be applied for further studies to control the growth and spread of bark decay fungi on the trunks wrapped with sticky roll traps.

A Study on Quantitative Risk Analysis & Model Application for Hydrogen Filling Center (수소충전시설에 대한 정량적 위험성 평가 및 모델적용에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.87-101
    • /
    • 2012
  • In gas industries, the potential risks of serious accidents have been increased due to high technology application and process complexities. Especially, in case of gas-related accidents, the extent of demage is out of control since gas plants handle and produce combustible, flammable, explosive and toxic materials in large amounts. The characteristics of this kind of disaster is that accident frequency is low, while the impact of damage is high, extending to the neighboring residents, environment and related industries as well as employees involved. The hydrogen gases treated important things and it used the basic material of chemical plants and industries. Since 2000, this gas stood in the spotlight the substitution energy for reduction of the global warming in particular however it need to compress high pressure(more than 150 bar.g) and store by using the special cylinders due to their low molecular weight. And this gas led to many times the fire and explosion due to leak of it. To reduce these kinds of risks and accidents, it is necessary to improve the new safety management system through a risk management after technically evaluating potential hazards in this process. This study is to carry out the quantitative risk assesment for hydrogen filling plant which are very dangerous(fire and explosive) and using a basic materials of general industries. As a results of this risk assessment, identified the elements important for safety(EIS) and suggested the practical management tools and verified the reliability of this risk assessment model through case study of accident.

Whitening and Antioxidant Effects of a Mixture of Poria cocas, Glycyrrhiza uralensis, and Ulmus macrocarpa Extracts (미백과 항산화에 미치는 백복령, 감초, 유백피 추출 혼합물의 영향)

  • Kwon, Eun-Jeong;Park, Hye-Jung;Nam, Hyang;Lee, Su-Gyeng;Hong, Su-Gyoung;Kim, Moon-Moo;Lee, Kyeong Rok;Hong, Il;Lee, Do Gyeong;Oh, Yunghee
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1063-1069
    • /
    • 2014
  • Reactive oxygen species (ROS) are known to lead to oxidation of lipids, proteins, and DNA and cause skin damage. Moreover, ROS promote melanogenesis, which causes melasma, age spots, and freckle. The main compounds of the herbal medicines Poria cocas, Glycyrrhiza uralensis, and Ulmus macrocarpa were reported to be parchymic acid, glabridin, and flavonoids, respectively. The aim of this study was to investigate the whitening and antioxidant effects of a mixture of P. cocas, G. uralensis, and U. macrocarpa extracts (PGUE) in B16F1 cells to develop whitening cosmetics. PGUE inhibited DPPH radicals and lipid peroxidation, in addition to high reduction power, compared with Glycyrrhiza uralensis ethylacetate extracts (GUEE). Furthermore, PGUE exhibited a protective effect against DNA oxidation induced by the hydroxyl radicals. In addition to its antioxidant activity, the inhibitory activity of PGUE against tyrosinase, which is associated with melanogenesis, was greater than that of arbutin used as a positive control. Moreover, PGUE exerted an inhibitory effect on melanin synthesis in live melanoma cells and reduced the expression levels of superoxide dismutase-1 (SOD-1) and tyrosinase related protein-1 (TRP-1). These results indicate that PGUE has skin whitening and antioxidant effects, suggesting that this mixture can be used as the main ingredient in the development of effective whitening cosmetics.

Occurrence and Influence of acid Leachate by Pyrite in Underground Rocks of Road Construction Field in the Miryang Area (밀양지역 도로건설 현장 지반암석내 분포하는 황철석에 의한 산성침출수 발생과 영향)

  • Chae, Sun Hee;Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Shin, Sang Sik;Park, Jun Sik;Ou, Song Min
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.501-512
    • /
    • 2018
  • The acid leachate derived from the sulfide mineral such as pyrite can cause problems such as aging of infrastructure and environment contamination around the civil construction site. The purpose of this study is to assess the environmental effect of an acid leachate derived from pyrite in the Miryang area under road construction. In this study, 13 samples of situ core were used for the net acid generation (NAG) experiment. The chemical composition including pH, oxidation and reduction potential (ORP) and electrical conductance of water samples produced from the NAG test was analyzed. In additional, five polished thin sections of rock cores were made for electro microprobe analyses. In the results of the NAG tests, 7 samples showed lower values than pH 3.5. It strongly indicated that these areas are under the environmental and infrastructure damage by the acid leachate. The chemical type of the 7 samples was classified as the $Fe(Ca)-SO_4$ type, which is totally a different type compared to general groundwater. The concentration of total sulfur ranges from 0.004% to 12.5%. 6 rock samples are plotted on a potentially acid forming zone in the relation diagram between the total sulfide and NAG-pH. In conclusion, it is suggested that a protection method against an environmental demage and an infrastructure corrosions by the acid leachate should be prepared in all of areas under a road construction.

Evaluation of Phototoxicity for Cosmetics and Alternative Method (화장품 광독성 평가와 동물대체시험법)

  • Lee, Jong-Kwon;Sin, Ji-Soon;Kim, Jin-Ho;Eom, Jun-Ho;Kim, Hyung-Soo;Park, Kui-Lea
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.3 s.52
    • /
    • pp.245-251
    • /
    • 2005
  • Safety is one of the key issue in the regulation of cosmetics. Cosmetic Act deals with it in Korea. The guidance for the testing cosmetic ingredients and their safety evaluation are prepared by Korea Food and Drug Administration. Ultraviolet radiation could Induce skin damage, edema, erythema, photoaging, immune dysfunction and skin cancer. Ultraviolet radiation is classified as Group 2A(probably carcinogenic to humans) by International Agenry for Reaserch on Cancer(IARC). The in vitro methodologies for evaluating the toxic potential of ingredients reported in the literature have not yet been sufficiently validated for use in areas other than the study for mutagenicity/genotoxicity, for pre-screening for severe irritancy, for screening of phototoxicity and for evaluating the percutaneous absorption. The 3T3 neutral red uptake photoxicity test (3T3 NRU PT) was accepted as OECD toxicity guideline in 2002. The 3T3 NRU PT is an in vitro method based on a comparison of the cytotoxicitv of a chemical when tested in the presence and in the absence of exposure to a non-cytotoxic dose of UVA/visible light.

Effect of Ramaria botrytis Methanol Extract on Hepatotoxicity in Benzo(α) Pyrene-treated Mice and Expression of Cytochrome P-450 1A1 Isozyme (벤조피렌 유발 마우스에서 싸리버섯 메탄올 추출물의 간 독성 억제효과 및 사이토크롬 P-450 1A1 Isozyme의 발현에 미치는 영향)

  • Kim, Hyun-Jeong;Lee, In-Seon;Bae, Jun-Tae;Kim, Ok-Mi;Park, Sun-Hee;Chang, Jong-Sun;Park, Jun-Hong;Lee, Kap-Rang
    • The Korean Journal of Mycology
    • /
    • v.31 no.1
    • /
    • pp.34-39
    • /
    • 2003
  • This study was conducted to investigate effects of Ramaria botrytis methanol extract on liver damage in benzo$({\alpha})$pyrene(B$({\alpha})$P)-treated mice. The activities of serum amminotransferase, cytochrome P-450, aminopyrine N-demethylase, aniline hydroxylase and hepatic content of lipid peroxide after B$({\alpha})$P-treatment were increased than control, but those levels were significantly decreased by the treatment of Ramaria botrytis methanol extract. Whereas, the hepatic glutathione content and activities of glutathionie S-transferase and r-glutamylcysteine syntherase were increased by the treatment of Ramaria botrytis methanol extract. In addition, cytochrome P-450 1A1 izozyme protein level, remarkably increased by B$({\alpha})$P-treatment was decreased by the treatment with methanol extract of Ramaria botrytis. These results suggest that the protective effect of methanol extract of Ramaria botrytis on liver injury in B$({\alpha})$P-treated mice may be due to reduction of oxygen free radical.

Effect of Plant Growth Regulators on Minimizing Ozone Injury in Tobacco(Nicotiana tabacum L.) (식물생장조절제(植物生長調節劑) 처리(處理)가 담배의 오존 피해경감(被害輕減)에 미치는 영향(影響))

  • Park, K.S.;Cho, J.H.;Sohn, J.K.;Lee, S.C.
    • Korean Journal of Weed Science
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 1998
  • This experiment was conducted to find out the effects of ABA and IAA on activities of antioxidant enzymes, antioxidant content, and growth of tobacco under exposure to ozone. The exposure to ozone in tobacco plant significantly decreased plant height, but it did not show any difference in vegetative characteristics except plant height of IAA $10^{-3}$M treated. Total chlorophyll content of NC 82 was dramatically decreased with increase in days after ozone treatment. However, reduction of chlorophyll was minimized when plant growth regulators were treated before ozone exposure. Three days treament of ozone in tobacco increased ascorbic acid of oxidised form, while slightly decreased `in reduced ascorbic acid by IAA treatment. But seven days of ozone treatment showed increase in ascorbic acid and decrease in dehydroascorbic acid. Ozone treatment did not show any difference in glutathione content and glutathione reductase activity when plant growth regulators were treated. Activities of superoxide dismutase(SOD), ascorbate peroxidase(AP) and guaiacol peroxidase(GP) were increased by the exposure to ozone for three days. However, there were no difference in activities of SOD, AP and GP due to exposure to ozone for seven days. These reactions may be interpreted as protective responses to prevent or alleviate the damage of tobacco plant by ozone exposure.

  • PDF