DOI QR코드

DOI QR Code

Occurrence and Influence of acid Leachate by Pyrite in Underground Rocks of Road Construction Field in the Miryang Area

밀양지역 도로건설 현장 지반암석내 분포하는 황철석에 의한 산성침출수 발생과 영향

  • Chae, Sun Hee (Department of Construction Safety and Disaster Preventing Engineering) ;
  • Jeong, Chan Ho (Department of Construction Safety and Disaster Preventing Engineering) ;
  • Lee, Yu Jin (Department of Construction Safety and Disaster Preventing Engineering) ;
  • Lee, Yong Cheon (Department of Construction Safety and Disaster Preventing Engineering) ;
  • Shin, Sang Sik (Jisan Engineering) ;
  • Park, Jun Sik (Department of Construction Safety and Disaster Preventing Engineering) ;
  • Ou, Song Min (Department of Construction Safety and Disaster Preventing Engineering)
  • 채선희 (대전대학교 건설안전방재공학과) ;
  • 정찬호 (대전대학교 건설안전방재공학과) ;
  • 이유진 (대전대학교 건설안전방재공학과) ;
  • 이용천 (대전대학교 건설안전방재공학과) ;
  • 신상식 ((주)지산이엔지) ;
  • 박준식 (대전대학교 건설안전방재공학과) ;
  • 오송민 (대전대학교 건설안전방재공학과)
  • Received : 2018.09.07
  • Accepted : 2018.09.27
  • Published : 2018.09.30

Abstract

The acid leachate derived from the sulfide mineral such as pyrite can cause problems such as aging of infrastructure and environment contamination around the civil construction site. The purpose of this study is to assess the environmental effect of an acid leachate derived from pyrite in the Miryang area under road construction. In this study, 13 samples of situ core were used for the net acid generation (NAG) experiment. The chemical composition including pH, oxidation and reduction potential (ORP) and electrical conductance of water samples produced from the NAG test was analyzed. In additional, five polished thin sections of rock cores were made for electro microprobe analyses. In the results of the NAG tests, 7 samples showed lower values than pH 3.5. It strongly indicated that these areas are under the environmental and infrastructure damage by the acid leachate. The chemical type of the 7 samples was classified as the $Fe(Ca)-SO_4$ type, which is totally a different type compared to general groundwater. The concentration of total sulfur ranges from 0.004% to 12.5%. 6 rock samples are plotted on a potentially acid forming zone in the relation diagram between the total sulfide and NAG-pH. In conclusion, it is suggested that a protection method against an environmental demage and an infrastructure corrosions by the acid leachate should be prepared in all of areas under a road construction.

건설현장의 지반내 황철석 등은 산성침출수를 발생시켜 주변환경 및 기반시설의 노화 촉진과 같은 문제를 야기한다. 이 연구에서는 밀양지역 도로공사구간의 시추코어를 대상으로 황철석에 의한 순 산발생량평가 및 침출수의 화학성분을 분석을 통하여 도로공사구간에 미치는 영향을 알아보고자 하였다. 이를 위하여 시추코어 시료 13점을 확보하여 순 산발생량(NAG)시험, pH, 산화환원전위, 전기전도도를 측정하고 화학성분을 분석하였다. 아울러 시추코어의 연마박편을 제작하여 전자현미분석을 실시하였다. 순 산발생량 시험결과, 산성배수의 가능성이 높고 관리가 필요한 pH 3.5 이하는 7지점이며, 화학성분은 $Fe(Ca)-SO_4$ 유형을 보인다. 코어내 전황 함량은 0.004~12.5%의 범위를 보이며, 전황(T-S)과 NAG-pH간 상관관계에서 6개의 시료가 산성암반배수 영역에 도시되었다. 따라서 도로공사 구간 전반에 걸쳐 산성배수로 인한 주변 환경 피해 및 시설물 노화 등에 대비하는 조치가 필요할 것이다.

Keywords

References

  1. Descostes, M., Vitroge, P., Beaucaire, C., 2004, Pyrite dissolution acidic media. Geochimica et Cosmochimica Acta, 68(22), 4559-4569. https://doi.org/10.1016/j.gca.2004.04.012
  2. Fowler, T.A., Holmes, P.R., Crundwell, F.K., 1999, Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 65(7), 2987-2993.
  3. Hillwood, A.L., Horwitz, P., Appleyard, S., Barton, C., Wajrak, M., 2006, Acid sulphate soil disturbance and metals in groundwater: implications for human exposure through home grown produce. Envronmental Pollution, 143(1), 100-105. https://doi.org/10.1016/j.envpol.2005.11.014
  4. Hong, S.H., Choi, P.Y., 1998, Geological report of the yuchon sheet(scale 1:50,000), Korea institute of energy and resources, 26.
  5. Jeong, C.H., Lee, Y.J., Lee, Y.C., Kim, M.S., Kim, H.K., Kim, T.S., Jo, B.U., Choi, H.Y., 2016, Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment, The Journal of Engineering Geology, 26(4), 531-549 (in Korean with English abstract). https://doi.org/10.9720/kseg.2016.4.531
  6. Kalin, M., Wheeler, W.N., Olaveson, M.M., 2006, Response of phytoplankton to ecological engineering remediation of a Canadian shield lake affected by acid mine drainage, Ecological Engineering, 28(3), 296-310. https://doi.org/10.1016/j.ecoleng.2006.08.010
  7. Kim, D.S., Lee, S.S., Kim, S.G., 2014, A study on the treatment of acidic water for construction of Eco-friendly Highway (in Korean), Geoenvironmental Engineering, 15(3), 12-26.
  8. Kirby, C.S., Thomas, H.M., Southam, G., Donald, R., 1999, Relative contributions of abiotic and biotic factors in Fe(II) oxidation in mine drainage, Applied Geochemistry, 14(4), 511-530. https://doi.org/10.1016/S0883-2927(98)00071-7
  9. Kock, D., Schippers, A., 2006, Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage, Hydrometallurgy, 83(1), 167-175. https://doi.org/10.1016/j.hydromet.2006.03.022
  10. Koryak, M., Shapiro, M.A., Sykora, J.L., 1972, Riffle zoobenthos in streams receiving acid mine drainage. Water Research, 6(10), 1239-1274. https://doi.org/10.1016/0043-1354(72)90024-3
  11. Luther, G.W., 1997, Comment on Confirmation of a sulfur-rich layer on pyrite after oxidative dissolution by Fe(III) ions around pH 2 by K. Sasaki, M. Tsunekawa, T. Ohtsuka, and H. Konno. Geochimica et Cosmochimica Acta, 61(15), 3269-3271. https://doi.org/10.1016/S0016-7037(97)00144-0
  12. Muhrizal, S., Shamshuddin, J., Fauziah, I., Husmi, M.A.H., 2006, Changes in iron-poor acid sulfate soil upon submergence. Geoderma, 131(1-2), 110-122. https://doi.org/10.1016/j.geoderma.2005.03.006
  13. Nordstrom, D.K., 1982, Aqueous pyrite oxidation and the subsequently formation of secondary minerals. In: Kittrick, J.A., Faming, D.F. and Hossaer, L.R., (eds), Acid sulphate weathering, SSSA, Madison, WI, 37-56.
  14. Rimstidt, J.D., Vaughan, D.J., 2003, Pyrite oxidation: A state-of-the-art assessment of the reaction mechanism. Geochimica et Cosmochimica Acta, 67(5), 873-880. https://doi.org/10.1016/S0016-7037(02)01165-1
  15. Singer, P.C., Stumm, W., 1970, Acid mine drainage: The rate limiting step. Science 167(3921), 1121-1123. https://doi.org/10.1126/science.167.3921.1121
  16. Stumm, W., Morgan, J.J., 1996, Aquatic chemistry : Chemical Equilibria and Rates in Natural Waters Third Edition, John Wiley & Sons Inc., New Yock, 1040.