Browse > Article
http://dx.doi.org/10.5352/JLS.2010.20.12.1777

Working Mechanism of Peroxiredoxins (Prxs) and Sulphiredoxin1 (Srx1) in Arabidopsis thaliana  

Kim, Min-Gab (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA)
Su'udi, Mukhamad (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA)
Park, Sang-Ryeol (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA)
Hwang, Duk-Ju (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA)
Bae, Shin-Chul (Bio-Crops Development Division, Department of Agricultural Biotechnology, National Academyof Agricultural Science, RDA)
Publication Information
Journal of Life Science / v.20, no.12, 2010 , pp. 1777-1783 More about this Journal
Abstract
Plants generate reactive oxygen species (ROS) as a by-product of normal aerobic metabolism or when exposed to a variety of stress conditions, which can cause widespread damage to biological macromolecules. To protect themselves from oxidative stress, plant cells are equipped with a wide range of antioxidant proteins. However, the detailed reaction mechanisms of these are still unknown. Peroxiredoxins (Prxs) are ubiquitous thiol-containing antioxidants that reduce hydrogen peroxide with an N-terminal cysteine. The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. Recently identified small protein sulphiredoxin (Srx1), which is conserved in higher eukaryotes, reduces cysteine.sulphinic acid in yeast peroxiredoxin. Srx1 is highly induced by $H_2O_2$-treatment and the deletion of its gene causes decreased yeast tolerance to $H_2O_2$, which suggest its involvement in the metabolism of oxidants. Moreover, Srx1 is required for heat shock and oxidative stress induced functional, as well as conformational switch of yeast cytosolic peroxiredoxins. This change enhances protein stability and peroxidase activity, indicating that Srx1 plays a crucial role in peroxiredoxin stability and its regulation mechanism. Thus, the understanding of the molecular basis of Srx1 and its regulation is critical for revealing the mechanism of peroxiredoxin action. We postulate here that Srx1 is involved in dealing with oxidative stress via controlling peroxiredoxin recycling in Arabidopsis. This review article thus will be describing the functions of Prxs and Srx in Arabidopsis thaliana. There will be a special focus on the possible role of Srx1 in interacting with and reducing hyperoxidized Cys-sulphenic acid of Prxs.
Keywords
Peroxiredoxin; sulphiredoxin; reactive oxygen species (ROS); reduction; oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Rhee, S. G., S. W. Kang, T. S. Chang, W. Jeong, and K. Kim. 2001. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35-41.   DOI
2 Schroder, E., J. A. Littlechild, A. A. Lebedev, N. Errington, A. A. Vagin, and M. N. Isupov. 2000. Crystal structure of decameric 2-Cys peroxiredoxin from human erythrocytes at 1.7 A resolution. Structure Fold Des. 8, 605-615.   DOI
3 Seo, M. S., S. W. Kang, K. Kim, I. C. Baines, T. H. Lee, and S. G. Rhee. 2000. Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem. 275, 20346-20354.   DOI
4 Stacy, R. A., E. Munthe, T. Steinum, B. Sharma, and R. B. Aalen. 1996. A peroxiredoxin antioxidant is encoded by a dormancy-related gene, Per1, expressed during late development in the aleurone and embryo of barley grains. Plant Mol. Biol. 31, 1205-1216.   DOI
5 Stacy, R. A., T. W. Nordeng, F. A. Culianez-Macia, and R. B. Aalen. 1999. The dormancy-related peroxiredoxin anti-oxidant, PER1, is localized to the nucleus of barley embryo and aleurone cells. Plant J. 19, 1-8.   DOI
6 Verdoucq, L., F. Vignols, J. P. Jacquot, Y. Chartier, and Y. Meyer. 1999. In vivo characterization of a thioredoxin h target protein defines a new peroxiredoxin family. J. Biol. Chem. 274, 19714-19722.   DOI
7 Wojtaszek, P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochem. J. 322, 681-692.
8 Woo, H. A., H. Z. Chae, S. C. Hwang, K. S. Yang, S. W. Kang, K. Kim, and S. G. Rhee. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300, 653-656.   DOI
9 Woo, H. A . W. Jeong, T. S. Chang, K. J. Park, S. J. Park, J. S. Yang, and S. G. Rhee. 2005. Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J. Biol. Chem. 4, 3125-3128.
10 Declercq, J. P., C. Evrard, A. Clippe, D. V. Stricht, A .Bernard, and B. Knoops. 2001. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 A resolution. J. Mol. Biol. 311, 751-759.   DOI
11 Dietz, K. J. 2003. Plant peroxiredoxins. Annu. Rev. Plant Biol. 54, 93-107.   DOI
12 Dietz, K. J., F. Horling, J. Konig, and M. Baier. 2002. The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J. Exp. Bot. 53, 1321-1329.   DOI
13 Finkemeier, I. G. M., P. Lamkemeyer, A. Kandlbinder, L. J. Sweetlove, and K. J Dietz. 2005. The mitochondrial type II peroxiredoxin F is essential for redox homeostasis and root growth of Arabidopsis thaliana under stress. J. Biol. Chem. 280, 12168-12180.   DOI
14 Fujii, J. and Y. Ikeda. 2002. Advances in our understanding of peroxiredoxin, a multifunctional, mammalian redox protein. Redox. Rep. 7, 123-130.   DOI
15 Georgiou, G. and L. Masip. 2003. Biochemistry. An overoxidation journey with a return ticket. Science 300, 592-594.   DOI
16 He, X., and A. R. Kermode. 2010. Programmed cell death of the megagametophyte during post-germinative growth of white spruce (Picea glauca) seeds is regulated by reactive oxygen species and the ubiquitin-mediated proteolytic system. Plant Cell Physiol. 51, 1707-1720.   DOI   ScienceOn
17 Hirotsu, S., Y. Abe, K. Okada, N. Nagahara, H. Hori, T. Nishino, and T. Hakoshima. 1999. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product. Proc. Natl. Acad. Sci. USA 96, 12333-12338.   DOI
18 Hofmann, B., H. J. Hecht, and L. Flohe. 2002. Peroxiredoxins. Biol. Chem. 383, 347-364.   DOI
19 Mitsumoto, A., Y. Takanezawa, K. Okawa, A. Iwamatsu, and Y. Nakagawa. 2001. Variants of peroxiredoxins expression in response to hydroperoxide stress. Free Radic. Biol. Med. 30, 625-635.   DOI
20 Lushchak, V. I. 2011. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 175-190.   DOI
21 Mullineaux, P. and S. Karpinski. 2002. Signal transduction in response to excess light: getting out of the chloroplast. Curr. Opin. Plant Biol. 5, 43-48.   DOI
22 Neumann, C. A., D. S. Krause, C. V. Carman, S. Das, D. P. Dubey, J. L. Abraham, R. T. Bronson, Y. Fujiwara, S. H. Orkin, and R. A. Van Etten. 2003. Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561-565.   DOI
23 Orozco-Cardenas, M. L., J. Narvaez-Vasquez, and C. A. Ryan. 2001. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13, 179-191.   DOI
24 Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275, 5723-5732.   DOI
25 Pulido, P., M. C. Spínola, K. Kirchsteiger, M. Guinea, M. B. Pascual, M. Sahrawy, L. M. Sandalio, K. J. Dietz, M. Gonzalez, and F. J. Cejudo. 2010. Functional analysis of the pathways for 2-Cys peroxiredoxin reduction in Arabidopsis thaliana chloroplasts. J. Exp. Bot. 61, 4043-4045.   DOI
26 Rabilloud, T., M. Heller, F. Gasnier, S. Luche, C. Rey, R. Aebersold, M. Benahmed, P. Louisot, and J. Lunardi. 2002. Proteomics analysis of cellular response to oxidative stress. Evidence for in vivo overoxidation of peroxiredoxins at their active site. J. Biol. Chem. 277, 19396-19401.   DOI
27 Chae, H. Z., K. Robison, L. B. Poole, G. Church, G. Storz, and S. G. Rhee. 1994. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA. 91, 7017-7021.   DOI
28 Bolwell, P. P., A. Page, M. Pislewska, and P. Wojtaszek. 2001. Pathogenic infection and the oxidative defences in plant apoplast. Protoplasma 217, 20-32.   DOI
29 Brehelin, C., E. H. Meyer, J. P. de Souris, G. Bonnard, and Y. Meyer. 2003. Resemblance and dissemblance of Arabidopsis type II peroxiredoxins: similar sequences for divergent gene expression, protein localization, and activity. Plant Physiol. 132, 2045-2057.   DOI
30 Chae, H. Z., S. J. Chung, and S. G. Rhee. 1994. Thioredoxin- dependent peroxide reductase from yeast. J. Biol. Chem. 269, 27670-27678.
31 Chae, H. Z., T. B. Uhm, and S. G. Rhee. 1994. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47. Proc. Natl. Acad. Sci. USA. 91, 7022-7026.   DOI
32 Chen, J. W., C. Dodia, S. I. Feinstein, M. K. Jain, and A. B. Fisher. 2000. 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J. Biol. Chem. 275, 28421-28427.   DOI
33 Chu, S. H., H. N. Noh, S. Kim, K. H. Kim, S. W. Hong, and H. Lee. 2010. Enhanced drought tolerance in Arabidopsis via genetic manipulation aimed at the reduction of glucosamine-induced ROS generation. Plant Mol. Biol. 74, 493-502.   DOI
34 Dat, J., S. Vandenabeele, E. Vranova, M. Van Montagu, D. Inze, and Breusegem. F. Van. 2000. Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779-795.   DOI
35 Horling, F., J. Konig, and K. J. Dietz. 2002. Type II peroxiredoxin C, a member of the peroxiredoxin family of arabidopsis thaliana: its expression and activity in comparison with other peroxiredoxins. Plant Physiol. Biochem. 40, 491-499.   DOI
36 Baier, M. and K. J. Dietz. 1997. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants. Plant J. 12, 179-190.   DOI
37 Barranco-Medina, S., J. J. Lazaro, and K. J. Dietz. 2009. The oligomeric conformation of peroxiredoxins links redox state to function. FEBS Lett. 18, 1809-16.
38 Biteau, B., J. Labarre, and M. B. Toledano. 2003. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature. 425, 980-984.   DOI
39 Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot (Lond). 91, 179-194.   DOI
40 Horling, F., M. Baier, and K. J. Dietz. 2001. The cellular redox poise regulates expression of the peroxide detoxifying chloroplast 2-Cys peroxiredoxin in the liverwort Riccia fluitans. Planta. 214, 283-287.   DOI
41 Horling, F., P. Lamkemeyer, J. Konig, I. Finkemeier, A. Kandlbinder, M. Baier, and K. J. Dietz. 2003. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol. 131, 317-325.   DOI
42 Kang, S. W., I. C. Baines, and S. G. Rhee. 1998. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem. 273, 6303-6311.   DOI
43 Karpinski, S., H. Reynolds, B. Karpinska, G. Wingsle, G. Creissen, and P. Mullineaux. 1999. Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657.   DOI   ScienceOn
44 Kong, W., S. Shiota, Y. Shi, H. Nakayama, and K. Nakayama. 2000. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co-migratory protein (Bcp). Biochem. J. 351, 107-114.   DOI
45 Konig, J., M. Baier, F. Horling, U. Kahmann, G. Harris, P. Schurmann, and K. J. Dietz. 2002. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proc. Natl. Acad. Sci. USA. 99, 5738-5743.   DOI
46 Kruft, V., H. Eubel, L. Jansch, W. Werhahn, and H. P. Braun. 2001. Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol. 127, 1694-1710.   DOI