• Title/Summary/Keyword: reduced-order control

Search Result 1,368, Processing Time 0.026 seconds

LMI Parameterization of Lineny Sliding Surfaces for Mismatched Uncertain Systems (정합조건을 만족시키지 않는 불확실한 시스템을 위한 선형 슬라이딩 평면의 LMI 매개변수화)

  • Lee, Jae-Kwan;Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.907-912
    • /
    • 2005
  • In this paper, we consider the problem of designing sliding surfaces fur a class of dynamic systems with mismatched uncertainties in the state space model. In terms of LMIs, we give necessary and sufficient conditions fir the existence of a linear sliding surface such that the reduced order sliding mode dynamics is asymptotically stable and completely independent of uncertainties. We parameterize all such linear sliding surfaces by using the solution to the given LMI conditions. And, we consider the problem of designing linear sliding surfaces guaranteeing pole placement constraints or $H_2/H_infty$ performances. Finally, we give a design example in order to show the effectiveness of our method.

A FORCE/POSITION CONTROL FOR TWO-ARM MOTION COORDINATION AND STABILITY ROBUSTNESS ANALYSIS

  • 최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.215-219
    • /
    • 1992
  • This paper presents a motion coordination of two robot manipulators coordinating an object. To coordinate the object, a force/position control scheme in a mode of leaer/follower is devised. The dynamics of the object are incorporated into the dynamics of the leader arm, which yields a reduced order model of two arm system. In order to regulate interaction forces between two arm, the dynamics of the follower arm are expressed as force dynamic equations such that a novel direct forces between two arms and two different type of bounded input disturbances, boundedness and asymptotic stability results based on a proposed Lyapunov function are shown. Also, a sufficient condition for a stability robustness is derived based on the Lyapunov approach.

An anti-filtering compensator design for a stable implementation of time delay controller (시간지연제어기를 안정하게 구현하기 위한 대향 필터링 보상기의 설계)

  • 문의준;이상열;이영철;이정훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1034-1039
    • /
    • 1992
  • Time Delay Controller(TDC) is a model following controller which uses input and output values and state variables to estimate additional quantity of dynamics due to external disturbances and/or model parameters variation at some past instant. TDC is very robust against parametric uncertainty whil it is not robust against unmodeled dynamics even showing instability. To solve this problem a stability anlysis is performed and a compensation technique using reduced order observer, Anti-Filtering Compensator(AFC), is proposed for a case in which the high order kinown dynamics is deliberately ignored. If the ignored dynamics causes instability of the TDC control system, AFC is shown to be indispensible fot a stable implementation of TDC.

  • PDF

Friction Coefficient, Torque Estimation, Smooth Shift Control Law for an Automatic Power Transmission

  • Jeong, Heon-Sul;Lee, Kyo-Ill
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.508-517
    • /
    • 2000
  • For shift quality improvement, torque sensors are currently too expensive to be used on production vehicles. To achieve smooth acceleration shift, the reference trajectory of the clutch slip speed for accomplishing the shift process within a designated shift completion time and its relationship with the clutch actuating torque were suggested by Jeong and Lee (1999). In order to facilitate the proposed algorithm, nonlinear estimators for necessary information such as the axle shaft torque, clutch friction and turbine torque were designed using only speed sensors. Accounting for the modeling error, a control law for this indirect smooth shift was proposed based on the above mentioned suggestions. Simulation results of the proposed estimators and shift controller were presented and further considerations for practical applications are discussed.

  • PDF

Reconstruction of the state variables from the low order controller (저차원제어기로부터 상태변수를 재구성하는 방법)

  • Jeong, Gwang-Yeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 1998
  • 발란싱 축소모델의 상태변수는 플랜트의 상태변수에 대한 정보를 주지 못한다. 발란싱 축소모델을 좌표 변환하여 얻은 상태유지 축소모델은 그 축소오차가 발란싱 축소모델의 축소오차와 같음을 증명하였다. 상태축소오차를 정의하였고, 이 오차를 구하는 방법을 제시하였는데, 이 오차는 축소모델의 차수가 정해지면 불변임을 증명하였다. 상태유지 축소모델의 상태변수는 그 상태축소오차가 작은 경우 원 시스템의 상태변수를 근사하는 장점이 있다. 상태유지 축소모델을 저차원제어기 설계에 적용하여 저차원 상태변수가 플랜트의 상태변수를 근사하는 예를 보여주었다.

  • PDF

Speed Sensorless Vector Control System with the Magnetizing Inductance Compensation structure (자화 인덕턴스 보상구조를 가지는 속도센서없는 벡터 제어시스템)

  • Kwon, Young-Gil;Choi, Jung-Soo;Kim, Sang-Uk;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2136-2138
    • /
    • 1998
  • In this study, the speed sensorless vector control system with the magnetizing inductance compensation structure is presented. The estimations of the rotor speed and the magnetizing inductance using the terminal voltages and currents are performed with the reduced order Gopinath flux observer. The rotor speed is estimated by the torque producing current which is derived from the estimated value of the rotor flux and the measured stator currents. In order to compensate the variation of the magnetizing inductance under the saturated conditions, we also established the compensation scheme which is made with the instantaneous reactive power. The validity of the proposed method is verified by simulation results.

  • PDF

Stable PID Tuning for High-order Integrating Processes using Model Reduction Method (모델축소를 이용한 고차계 적분공정의 안정한 PID 동조)

  • Lee, Won-Hyok;Hwang, Hyung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.2010-2016
    • /
    • 2007
  • PID control is windely used to control stable processes, However, its application to integrating processes is less common. In this paper, we proposed a stable PID controller tuning method for integrating processes with time delay using model reduction method. For proposed model reduction method, it disconnect an integrating factor from integrating processes and reduces separate process using reduction method. and it connect an integrating factor to reduced model. We can obtain stable integrating processes using P controller in inner feedback loop and PID tuning is then used to cancel the pole of the feedback loop. This guarantees both robustness and performance. Simulation examples are given to show the good performance of the proposed tuning method comparing with other methods.

Vibration Control on the Diesel Power Plant by the Phase Adjustment of Paralled Engines' X-Mode Vibration; (병렬 엔진의 X형 진동 위상 조정에 의한 디젤 발전 플랜트 진동 제어)

  • 이돈출;김의간;전효중
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.701-708
    • /
    • 1996
  • Diesel power plants are frequently used as a power supplier on the island and the isolated places where electric power is required. The heat efficiency of the low speed 2 stroke diesel engines is higher than those of 4 stroke diesel engines or other heat engines and further its mobility and durability is also better than other engines. They can be also easily repaired and maintained. With these advantages, demand for the use of the low speed 2 stroke diesel engine as a power source is increasing. However, there are some disadvantages with these diesel engines such as the bigger vibrating excitation forces generated by higher combustion pressure in cylinder and by the inertia force of the reciprocating parts. Further, engine vibrations are transfered into their adjacent buildings and manufacturing factories and eventually produces local vibrations. In order to reduce X-mode vibration of engine body, several methods have been introduced in the recent researches. In this paper, accordingly, a new vibrationcontrol method applying a synchrophaser and a top bracing between two diesel engines is adopted in order to reduce these structural vibrations of diesel power plant. It was experimentally verified that the structural vibrations were greatly reduced by the phase adjustment for the 6th order X-mode vibration with the synchrophaser and the top bracing.

  • PDF

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

Passive Control of Condensation Shock Wave in a Transonic Nozzle (천음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Baek, Seung-Cheol;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.